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UO‘K 52 

 

 MATRITSANING SONLI TASVIRI  

 

Abdullayev Sarvar Anvar oʻgʻli, 

Buxoro davlat pedagogika instituti  oʻqituvchisi 

 

Annotatsiya. Ushbu maqolada 3×3 o‘lchamli o‘z-o‘ziga qo‘shma sonli matritsaning sonli tasviri, 

uning xos qiymatlari va sonli tasvir bilan spektr orasidagi bog‘liqlik o‘rganilgan. Matritsaning sonli tasviri 

uchun umumiy teoremalar isbotlangan hamda ayrim maxsus holatlar uchun lemma va misollar orqali aniq 

ifodalar keltirilgan. Natijalar orqali sonli matritsalar spektrining joylashuv oralig‘i va ularning sonli tasviri 

orasidagi uzviylik tahlil qilingan. 

Kalit so‘zlar: sonli tasvir, xos qiymat, spektr, chiziqli operator, o‘z-o‘ziga qo‘shma matritsa, Gilbert 

fazosi, rezolventa. 

 

ЧИСЛОВОЕ ИЗОБРАЖЕНИЕ МАТРИЦЫ РАЗМЕРА 3×3 

 

Аннотация. В данной статье исследуется числовое изображение самосопряжённой числовой 

матрицы размера 3×3, её собственные значения и взаимосвязь между спектром и числовым 

образом. Приведены и доказаны основные теоремы и леммы, а также рассмотрены конкретные 

примеры для специальных случаев. Полученные результаты позволяют определить взаимосвязь 

между спектром матрицы и интервалом её числового образа. 

Ключевые слова: числовое изображение, собственные значения, спектр, линейный оператор, 

самосопряжённая матрица, гильбертово пространство, резольвента. 

 

NUMERICAL RANGE OF A 3×3 MATRIX 

 

Abstract. This article examines the numerical range of a 3×3 self-adjoint complex matrix, its 

eigenvalues, and the relationship between the numerical range and the spectrum. General theorems for the 

numerical range of a matrix are proven, and precise expressions for some special cases are provided 

through lemmas and examples. The results are used to analyze the connection between the location interval 

of the spectrum of numerical matrices and their numerical range. 

Keywords: numerical range, eigenvalue, spectrum, linear operator, self-adjoint matrix, Hilbert space, 

resolvent. 

 

Kirish. H Gilbert fazosi va  aniqlanish sohasi  bo’lgan chiziqli operator bo’lsin.  

Ushbu 

 
to’plamga A operatorning sonli tasviri deyiladi. Ta’rifdan ko’rinib turibdiki,  to’plam kompleks 

sonlar tekisligining qismi bo’ladi va  to’plamning geometrik xossalari A operator haqida bir qancha 

ma’lumotlarni tavsiflaydi. 

Gilbert fazosidagi chiziqli operatorning sonli tasvirni o’rganish bunday operatorlar spektrining 

joylashuv o’rnini o’rganishdagi muhim usullardan biri hisoblanadi.  

Matritsaning sonli tasviri uning barcha xos qiymatlarini o’z ichiga oladi.   

Faraz qilaylik, C  kompleks sonlar to’plami bo’lsin.  fazoda ushbu 

 
ko’rinishidagi  sonli matritsani qaraymiz, bu yerda   lar ixtiyoriy haqiqiy sonlar, 

  lar esa ixtiyoriy kompleks sonlar. 

M matritsaning elementlariga qo’yilgan bunday shartlarda bu matritsa  dagi chiziqli chegaralangan 

va o’z-o’ziga qo’shma bo’lgan operatorni ifodalaydi. Shu sababli uning barcha xos qiymatlari haqiqiydir. 

1-lemma.M matritsaning sonli tasviri uchun ushbu  
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tenglik o’rinlidir, bu yerda  sonlari M matritsaning xos qiymatlaridir. 

Isbot. Faraz qilaylik, M matritsa  xos qimatlarga ega bo’lsin. M matritsaning  

xos qiymatiga mos keluvchi birlik xos vektorlarni X bilan,  xos qiymatiga mos keluvchi 

birlik xos vektorlarni Y bilan belgilaymiz, u holda  

 
munosabatlar o’rinlidir.  

Ko’rinib turibdiki,  kvadratik formaning  birlik sfera bo’yicha eng kichik qiymati X 

da, eng katta qiymati esa Y  erishiladi. Demak,  

 
1-lemma isbot bo’ldi. 

2-lemma. Agar  bo’lsa, u holda  

 
tenglik o’rinlidir. 

Isbot. Faraz qilaylik,  bo’lsin, u holda  

 . 

M matritsaning xos qiymatlari  

 
xarakteristik tenglamaning nollari bo’ladi. Bundan esa M matritsaning xos qiymatlari  

  ekanligi kelib chiqadi. 1-lemmaga ko’ra, 

 
3-lemma. Agar   bo’lsa, u holda  

 
tenglik o’rinlidir, bu yerda  

 
Isbot. Faraz qilaylik,  bo’lsin, u holda 

 
M matritsaning xarakteristik tenglamasi esa  

 
bo’ladi.  

 
Bizga ma’lumki, xarakteristik tenglamaning yechimlari M  matritsaning xos qiymatlaridir. (1)-

tenglamani yechish  va  tenglamani yechishga keladi.  

 Bundan esa,  

 
Quyidagicha  

 
belgilash kiritaylik.  1-lemmaga ko’ra, 

 
4-lemma. Agar  bo’lsa, u holda  

 
tenglik o’rinlidir, bu yerda 
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1-Misol.  

 
matritsaning sonli tasvirini toping. 

Bu matritsa uchun 

 
 va   qiymatlarni topish formulalariga asosan  

 

 

 

 

 

 
 

 
ga teng. 

U holda  

 

 , bu yerda  

 da  

 da  

1-teoremaga ko’ra matritsaning sonli tasviri  bo’ladi. 

2-Misol. 

 
matritsani sonli tasvirini topaylik. 

 Bizga ma’lumki,  

 

 

 

 

 

 
U holda,  
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  da     ga 

  da     ga teng. 

1-teoremaga ko’ra, matritsaning sonli tasviri uchun ushbu 

 
tenglik o’rinlidir. 

3-Misol.  

 
matritsaning sonli tasvirini toping. 

Bizga ma’lumki,  

 
Sodda hisoblashlarni bajarib,  va   ning qiymatini topamiz:  

 

 

 

 
U holda,  

 
  da   

  da   

1-teoremaga ko’ra, matritsaning sonli tasviri uchun ushbu  

 
tenglik  o’rinlidir. 

Xulosa. Ushbu maqolada 3×3 o‘lchamli o‘z-o‘ziga qo‘shma sonli matritsaning sonli tasviri va uning 

xos qiymatlari orasidagi bog‘liqlik tahlil qilindi. Matritsaning sonli tasviri orqali xos qiymatlar to‘plamining 

joylashuv oralig‘i aniqlanib, bu holat uchun umumiy teorema va lemmalar isbotlandi. Keltirilgan misollar 

asosida sonli tasvirning spektr bilan bevosita bog‘liqligi amaliy tarzda ko‘rsatildi. Olingan natijalar chiziqli 

operatorlar va matritsalar spektral nazariyasini yanada chuqurroq o‘rganishda hamda funksional analiz 

masalalarida qo‘llash imkonini beradi. 
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UO‘K 51 

 

BLOK OPERATORLI MATRITSALARNING SONLI OBRAZLARI  

 

Abdullayev Sarvar Anvar oʻgʻli, 

Buxoro davlat pedagogika instituti oʻqituvchisi 

 

Annotatsiya. Ushbu maqolada blok operatorli matritsalarning sonli, kvadratik va kubik sonli 

obrazlari tushunchalari hamda ularning asosiy xossalari tahlil qilinadi. Chiziqli chegaralangan 

operatorlarning blok shaklidagi tasviri orqali ularning spektral xususiyatlari, sonli obrazlar to‘plamining 

chegaralanganligi va yopiq bo‘lishi, shuningdek, operatorning o‘z-o‘ziga qo‘shmalik holatlarida yuzaga 

keluvchi aloqalar o‘rganilgan. Tadqiqot natijalari funksional analiz va operatorlar nazariyasidagi ayrim 

muammolarni yechishda qo‘llanilishi mumkin. 

Kalit so‘zlar: blok operatorli matritsa, chiziqli operator, sonli obraz, kvadratik sonli obraz, kubik 

sonli obraz, Gilbert fazosi, xos qiymat, spektr. 

 

ЧИСЛОВЫЕ ОБРАЗЫ БЛОЧНО-ОПЕРАТОРНЫХ МАТРИЦ 

 

Аннотация. В данной статье рассматриваются числовые, квадратные и кубические образы 

блочно-операторных матриц и их основные свойства. С помощью блочного представления линейных 

ограниченных операторов исследуются спектральные характеристики, ограниченность и 

замкнутость множеств числовых образов, а также их взаимосвязь в случае самосопряжённых 

операторов. Полученные результаты могут быть использованы при решении задач 

функционального анализа и теории операторов. 

Ключевые слова: блочно-операторная матрица, линейный оператор, числовой образ, 

квадратный числовой образ, кубический числовой образ, пространство Гильберта, собственные 

значения, спектр. 

 

NUMERICAL RANGES OF BLOCK OPERATOR MATRICES 

 

Abstract. This article examines the numerical, quadratic, and cubic ranges of block operator matrices 

and their fundamental properties. Using the block representation of bounded linear operators, the study 

explores spectral characteristics, the boundedness and closedness of numerical ranges, and their 

interrelations in the case of self-adjoint operators. The obtained results can be applied to solving certain 

problems in functional analysis and operator theory. 

Keywords: block operator matrix, linear operator, numerical range, quadratic numerical range, cubic 

numerical range, Hilbert space, eigenvalue, spectrum. 

 

Kirish. Faraz qilaylik,  va  lar Gilbert fazolari bo’lib, H orqali ularning to’g’ri yig’indisini 

belgilaymiz,  esa H ni H ga o’tkazuvchi chiziqli chegaralangan (uzluksiz) operatorlar fazosi bo’lsin. 

Bizga ma’lumki, har qanday  operator 

 
 blok operatorli matritsa ko’rinishda tasvirlanadi, bu yerda 

 elementlar chiziqli chegaralangan operatorlar. Agar A operator uchun 

tengliklar bajarilsa, u holda A o’z-o’ziga qo’shma operator bo’ladi, 

ya’ni .  va  lar orqali  fazodagi mos ravishda skalyar ko’paytma va normani 

belgilaymiz.  

 elementlar uchun 

 
 matritsaning barcha xos qiymatlari to’plamiga  blok operatorli matritsaning (1)- 

ko’rinishiga mos keluvchi kvadratik sonli obrazi deyiladi va  kabi belgilanadi, ya’ni 
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bu yerda,  orqali  ning nuqtali spektri belgilangan.  sonli matritsa bo’lganligi 

uchun  to’plam  matritsaning xos qiymatlaridan iborat bo’ladi. 

H Gilbert fazosining turli yoyilmalariga turli kvadratik sonli obrazlar to’g’ri keladi. 

Masalan, ushbu 































0321

3012

1021

0112

i

i
M  

 sonli matritsaning  va   yoyilmalariga mos kvadratik sonli obrazlar turlicha bo’ladi. 

Ba’zi hollarda kvadratik sonli obrazning quyidagi ekvivalent ta’rifidan foydalanish qulaydir, bunda  

va lar nolmas bo’lib, normasi 1 ga teng bo’lishi shart emas. 

 element uchun  

 
matritsani qaraymiz va 

 
bo’lsin.  

U holda 

 
munosabat o’rinli. 

Chiziqli operatorning kvadratik sonli obrazi hamisha uning sonli obrazida saqlanadi: 

. 

Agar A operator yuqori yoki quyi uchburchak ko’rinishiga ega bo’lsa, ya’ni 

   yoki     bo’lsa, u holda  

 tenglik o’rinlidir. Chiziqli chegaralangan blok operatorli matritsaning 

kvadratik sonli obrazi C kompleks sonlar to’plamining chegaralangan qism to’plami bo’ladi: 

 
Agar  bo’lsa, u holda  yopiq to’plam bo’ladi. Sonli obrazdan farqli ravishda 

kvadratik sonli obraz umuman olganda qavariq to’plam bo’lmasligi ham mumkin, bu to’plam ko’pi bilan 

ikkita komponentdan iboorat bo’lishi mumkin.  

Agar  sonlar orqali aniqlangan  

 
 sonli matritsada  va  bo’lsa, u holda uning xos qiymatlari 

 

 
ko’rinishida tasvirlanadi. 

 element uchun  
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belgilashni kiritamiz. Agar  bo’lsa, u holda 

 

 
belgilashni kiritamiz. Agar o’z-o’ziga qo’shma bo’lsa, u holda  bo’ladi va 

 
tenglik o’rinlidir, bu yerda  

 
Shunday qilib, chiziqli chegaralangan blok operatorli matritsalarning kvadratik sonli obrazini 

o’rganishda  sonli matritsaning xos qiymatlari muhim o’rin egallar ekan. 

Endi chiziqli operatorning kubik sonli obrazini qaraymiz. Agar operatorning spektri uchta 

kesishmaydigan kesmalar birlashmasidan iborat bo’lsa, u holda bu operatorning sonli obrazi ham, kvadratik 

sonli obrazi ham spektri yetarlicha o’rganish imkonini bera olmaydi. Quyida biz kubik sonli diopozon va 

uning ba’zi xossalariga to’xtalamiz. 

  va  lar Gilbert fazolari, H esa bu fazolarning to’g’ri yig’indisi, ya’ni  

 
bo’lsin. U holda istalgan  operator 

 
ko’rinishidagi  blok operatorli matritsa kabi tasvirlanadi, bunda  

 lar chiziqli chegaralangan operatorlar. 

S orqali H  dagi birlik sferani belgilaymiz, ya’ni 

 
 element uchun ushbu 

 
 matritsani qaraymiz. 

U holda 

 
to’plamga  blok operatorli matritsaning (2) ko’rinishiga mos kubik sonli obrazi deyiladi. 

Ma’lumki, har bir uchun 

 
tenglik o’rinlidir. Shu sababli,  to’plam uchun quyidagi ekvivalent formula o’rinli: 

 
Chiziqli operatorning kubik sonli obrazi hamisha uning sonli obrazida yotadi, ya’ni 

. 

Agar A operator yuqori yoki quyi uchburchak ko’rinishda bo’lsa, ya’ni  

 yoki  

ko’rinishga ega bo’lsa, u holda  uchun 
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tenglik o’rinlidir. 

Chiziqli chegaralangan blok operatorli matritsaning kubik sonli obrazi C komleks sonlar to’plamning 

chegaralangan qism to’plamidir, ya’ni 

 
Agar  bo’lsa, u holda  yopiq to’plam bo’ladi. Kubik sonli obraz ko’pi bilan uchta 

komponentlardan iborat bo’lishi mumkin.  

Xulosa. Yuqorida keltirilgan ma’lumotlardan shuni xulosa qilish mumkinki,  blok operatorli 

matritsa kubik sonli obrazini o’rganishda  sonli matritsa xos qiyatlari muhim o’rin egallaydi. 
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TАRMOQLАNUVCHI TASODIFIY JАRАYONNING TA’RIFI VA TALQINI 

 

Muxtorova Shohida Negmat qizi, 

Qarshi davlat texnika universiteti o‘qituvchisi 

muxtorovashohida1998@gmail.com  

 

Annotatsiya. Ushbu maqolada tarmoqlanuvchi tasodifiy jarayonlarning nazariy asoslari, ularning 

matematik ta’rifi hamda ehtimollik nuqtayi nazaridan talqini yoritilgan. Tarmoqlanuvchi jarayon — bu vaqt 

o‘tishi bilan elementlarning ko‘payishi yoki yo‘qolishi ehtimoli orqali rivojlanadigan tasodifiy tizim sifatida 

qaraladi. Maqolada bunday jarayonlarning Markov xossasi, stasionarlik, o‘sish tezligi va yo‘qolish ehtimoli 

kabi asosiy xususiyatlari tahlil qilinadi. Shuningdek, Galton–Watson modeli misolida tarmoqlanuvchi 

tasodifiy jarayonning amaliy talqini va uning populyatsiya dinamikasini modellashtirishdagi ahamiyati 

ko‘rsatib o‘tilgan. Tadqiqot natijalari tarmoqlanuvchi jarayonlarning biologiya, demografiya, 

epidemiologiya va axborot tizimlaridagi qo‘llanilishini nazariy jihatdan asoslashga xizmat qiladi. 

Kalit so‘zlar: tarmoqlanuvchi tasodifiy jarayon, ehtimollik modeli, Markov xossasi, Galton–Watson 

jarayoni, stasionarlik, populyatsiya dinamikasi. 

 

ОПРЕДЕЛЕНИЕ И ИНТЕРПРЕТАЦИЯ ВЕТВЯЩЕГОСЯ СЛУЧАЙНОГО ПРОЦЕССА 

 

Аннотация. В данной статье рассматриваются теоретические основы ветвящихся 

случайных процессов, их математическое определение и вероятностная интерпретация. 

Ветвящийся процесс рассматривается как стохастическая система, которая развивается во 

времени за счёт вероятностного размножения или исчезновения элементов. Проанализированы 

основные свойства таких процессов, включая марковское свойство, стационарность, скорость 

роста и вероятность вырождения. В качестве примера приведена модель Гальтона–Уотсона, 

демонстрирующая практическое применение ветвящихся случайных процессов при моделировании 

динамики популяций. Результаты исследования способствуют теоретическому обоснованию 

применения ветвящихся процессов в биологии, демографии, эпидемиологии и информационных 

системах. 

Ключевые слова: ветвящийся случайный процесс, вероятностная модель, марковское 

свойство, процесс Гальтона–Уотсона, стационарность, динамика популяции. 

 

DEFINITION AND INTERPRETATION OF THE BRANCHING RANDOM PROCESS 

 

Abstract. This article examines the theoretical foundations of branching stochastic processes, 

providing their mathematical definition and probabilistic interpretation. A branching process is considered 

as a stochastic system that evolves over time through the probabilistic reproduction or extinction of its 

elements. The paper analyzes key properties such as the Markov property, stationarity, growth rate, and 

extinction probability. The Galton–Watson model is presented as an example to illustrate the practical 

interpretation of branching stochastic processes and their role in modeling population dynamics. The results 

of the study contribute to the theoretical justification of branching process applications in biology, 

demography, epidemiology, and information systems. 

Keywords: branching stochastic process, probabilistic model, Markov property, Galton–Watson 

process, stationarity, population dynamics. 

 

Kirish. Bu maqoladа biz bir turdagi zarrachalar bilan berilgan eng sodda tur Markov tarmoqlanuvchi 

jarayonlarini o‘rganamiz. Vaqtga nisbatan bir jinsli Markov jarayonlarini  1,2,...  holatlar fazosida 

qaraymiz. Markov jarayonining o‘tish ehtimolligi ( ),ijP t t T  quyidagi shartlarni qanoatlantiradi: 

                                                ( ) 0ijP t                                                                             (1) 

barcha ,i j va t T   uchun (nomanfiylik sharti); 

                                                                
0

( ) 1ij

j

P t




                                                                          (2) 
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ixtiyoriy ,i j va t T   da (normalanganlik sharti); 

                                                        
0

( ) ( ) ( )ij ik kj

k

P t P u P t u




                                                           (3) 

ixtiyoriy , 0 , ,i j va u t u t T    (markovlik xossasi); 

                                                   
1,

(0)
0,

ij ij

i j
P

i j



  


   (boshlang‘ich shart)                                         

(4). 

Ta’rif 1.1.1. Agar ( )ijP t  o‘tish ehtimolligi 1 ( )jP t  ning n-karrali taqsimot kompozitsiyasi 

                                      
1 2

1 2

*
1 1 1 1

...

( ) ( ) ( ) ( )... ( )
i

i

i
ij j j j j

j j j j

P t P t P t P t P t
   

                                                (5) 

(tarmoqlanish sharti)ga ega bo‘lsa, Markov jarayoni  da tarmoqlanuvchi deyiladi, xususan, 0i  da 

(1.1.5) shart 0 0( )j jP t   ni bildiradi [14]. 

T ning qism to‘plamlari nomanfiy butun sonlar to‘plami  0 0  yoki  0,t   bo‘lishi 

mumkin. Birinchi holatda diskret vaqtli, ikkinchi holatda uzluksiz vaqtli tarmoqlanuvchi jarayonlar haqida 

gapiramiz.  

 0,t  uzluksiz bo‘lgan holatda odatda yana qo‘shimcha  

                                                            
0

lim ( ) 1ii
t

P t


                                                                    (6) 

uzluksizlik sharti ishlatiladi. (6), (1) va (2) shartlardan birdaniga har bir i  uchun barcha j i  larda bir 

tekis  

                                                              
0

lim ( ) 0ij
t

P t


 ,                                                                           (7) 

(3) shartdan esa barcha ( )iiP t  o‘tish ehtimolliklarining 0t   da uzluksizligi kelib chiqadi.  

(5) tarmoqlanish shartlari ko‘rib chiqilayotgan tarmoqlanuvchi jarayonlar sinfini  Markov 

jarayonlaridan ajratib turadi. Bunday tanlash ikki nuqtayi  nazardan asoslanadi. Bir tomondan, 

tarmoqlanuvchi jarayonlar fizikada, kimyoda, biologiyada, texnikada, demografiyada va boshqalarda real 

hodisalarning ancha keng sinfini tavsiflaydi. Boshqa tomondan, juda qulay matematik apparat bo‘lgan hosil 

qiluvchi funksiyalar tarmoqlanuvchi jarayonlarni chuqur o‘rganish imkonini beradi. Tarmoqlanuvchi 

jarayonlar nazariyasida ularning o‘ziga xos muammoli bayonlari va ularni hal qilish usullari tabiiy ravishda 

ajralib turadi [3]. 

Kelgusida biz fizik va kimyoviy hodisalar bilan bog‘liq bo‘lgan tarmoqlanuvchi jarayonlarining 

haqiqiy mazmunini aks ettiruvchi vizual terminologiyaga amal qilamiz. Bizga bir xil turdagi zarrachalar 

berilgan bo‘lsin. Tizimning holati zarrachalar soni bilan aniqlanadi. t vaqtdagi zarrachalar sonini ( )X t  bilan 

belgilaylik. Faraz qilaylik, t vaqtda bir zarracha, kelib chiqishi va boshqa zarrachalar mavjudligidan qat’iy 

nazar, 1 ( )nP t ehtimollig bilan n  ta zarrachaga aylanadi va 1

0

( ) 1n

n

P t




 . Bundan agar dastlabki vaqtda k  ta 

zarracha mavjud bo‘lsa, keyin t  vaqt o‘tishi bilan ular (1) (2) ( )( ) ( ) ... ( )kX t X t X t    zarrachaga aylanadi, 

bu yerda ( ) ( )iX t  - i  zarrachaning avlodlar soni, barcha ( ) ( ), 1,2,...,iX t i k  lar bog‘liqsiz va bir xil 

 ( )
1 ( ) ( )i
nP t P X t n   taqsimotga ega. Shunday qilib, t vaqt ichida ( )knP t  ning k  zarrachadan n  ta 

zarrachaga o‘tish ehtimoli uchun 1 ( )nP t  ning k-karrali  kompozitsiyasi, ya’ni 

1 2

1 2

*
1 1 1 1

...

( ) ( ) ( ) ( )... ( )
k

k

k
kn n n n n

n n n n

P t P t P t P t P t
   

    

o‘rinli. 

Bundan tashqari, biz zarrachalarning o‘zgarishi oldingi davrdagi tarixiga  bog‘liq emas, deb faraz 

qilganimiz uchun, ( )X t jarayon Markov jarayonidir, ya’ni ( )knP t  o‘tish ehtimolligi (3) shartni 

qanoatlantiradi [13]. 

Tarmoqlanuvchi tasodifiy jarayon — bu ehtimollik nazariyasida o‘ziga xos o‘rin egallagan, avlodlar 

bo‘yicha takrorlanadigan stoxastik tizim bo‘lib, uning asosiy strukturasini elementlarning mustaqil 
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replikatsiya mexanizmi tashkil etadi. Har bir element ma’lum ehtimollik taqsimotiga ega bo‘lgan tasodifiy 

sonli avlod hosil qilishi bilan jarayonning keyingi holati aniqlanadi. Shuning uchun tarmoqlanuvchi 

jarayonlarning dinamikasi diskret vaqtli va tasodifiy ko‘payish mexanizmiga ega bo‘lgan Markov jarayoni 

sifatida qaraladi. 

Tarmoqlanuvchi jarayonni tavsiflashda asosiy parametrlar quyidagilardan iborat: 

1. Avlodlar taqsimoti 

Jarayonning rivojlanishi  kp P X k   ehtimollik taqsimoti orqali belgilanadi. Bu taqsimot har bir 

element nechta avlod hosil qilishi mumkinligini ko‘rsatadi. Avlodlar taqsimoti jarayonning barqarorligi va 

uzoq muddatli xatti-harakatini aniqlovchi asosiy omildir. 

2. Matematik kutilma: 

Jarayonning o‘sish yoki yo‘qolish holati quyidagi kutilma bilan aniqlanadi: 

k

k o

m kp




   

Agar ( m < 1 ) bo‘lsa — jarayon degeneratsiyalanuvchi, ya’ni yo‘q bo‘lib ketadi. 

Agar ( m = 1 ) bo‘lsa — kritik holat, jarayonning uzoq muddatli barqarorligi sezilarli darajada 

tasodifiylikka bog‘liq. 

Agar ( m > 1 ) bo‘lsa — jarayonning cheksiz o‘sish ehtimoli mavjud bo‘ladi. 

3. Generatsiya funksiyasi 

Tarmoqlanuvchi jarayonlarning matematik tahlilida quyidagi generatsiya funksiyasi muhim rol 

o‘ynaydi: 

( ) k
k

k o

G s p s




   

Bu funksiya jarayonning avlodlar soniga oid barcha ehtimollik xususiyatlarini o‘zida 

mujassamlashtiradi. Jarayonning asimptotik tavsifi va yo‘qolish ehtimoli aynan ushbu funksiyaning qat’iy 

matematik xususiyatlari orqali aniqlanadi. 

4. Yo‘qolish ehtimoli: 

Jarayonning yo‘qolish ehtimoli q generatsiya funksiyasining quyidagi tenglamani qanoatlantiruvchi 

eng kichik musbat ildizidir: 

q = G(q). 

Bu matematik mezon jarayonning uzoq muddatli barqarorligini baholashda asosiy nazariy vosita 

hisoblanadi. 

5. Tarmoqlanuvchi jarayonlarning qo‘llanilish sohalari: 

Ushbu jarayonlar ko‘plab amaliy sohalarda qo‘llaniladi: 

Biologiya — populyatsiya o‘sishini modellashtirish 

Genetika— nasl zanjiri va mutatsiya jarayonlarining rivojlanishi 

Epidemiologiya— infeksiya tarqalishi zanjiri 

Yadroviy fizika — neytronlarning ko‘payish jarayoni 

Axborot tizimlari — tarmoqlanuvchi ma’lumot oqimlarining modellarini yaratish 

Har bir sohada jarayonning o‘ziga xos interpretatsiyasi mavjud bo‘lib, ular orqali murakkab 

tizimlarning tasodifiy rivojlanish qonuniyatlari aniqlanadi. 

6. Tarmoqlanuvchi jarayonning talqini: 

Tarmoqlanuvchi jarayon nafaqat matematik model, balki tizimlarning o‘z-o‘zidan rivojlanishiga oid 

universal konsepsiya sifatida qaraladi. U tizimdagi har bir elementning mustaqil qaror qabul qilishi yoki 

mustaqil ko‘payish mexanizmi mavjud bo‘lgan holatlarni aniqlashda qo‘llanadi. Shuning uchun ushbu 

jarayon tasodifiy tizimlarning o‘z-o‘zidan tashkil bo‘lishi va o‘sish dinamikasini tushuntiruvchi fundamental 

nazariy model sanaladi. 

Diskret vаqtli tаrmoqlаnuvchi jаrаyonlаr nаzаriyasi XIX аsrning ikkinchi yarmidа yashаgаn аngliyalik 

stаtistiklаr Gаlton vа Vаtsonlаr nomlаri bilаn bog‘liq. Ulаr fаmiliyalаrni yо‘qolib ketishi mаsаlаsini 

yechishdа о‘zlаrining mаtemаtik modelini tаklif etishgаn. Keyinchаlik bu model umumlаshmаsi bilаn 

bog‘liq jаrаyonlаr (diskret vаqtli) Gаlton-Vаtson jаrаyonlаri deb nom oldi. Gаlton-Vаtson jаrаyonining 

uzluksiz vаqtdi umumlаshmаsi esа tаrmoqlаnuvchi Mаrkov jаrаyonlаridir. Demаk, Gаlton-Vаtson jаrаyoni 

tаrmoqlаnuvchi jаrаyonlаrning eng soddа kо‘rinishi ekаn. Jаrаyondа ishtirok etаyotgаn аlohidа zаrrаchаlаr 

evolyusiyasi zаrrаchаlаr о‘tmishi vа sonigа bog‘liq bо‘lmаgаn holdа аmаlgа oshаdi. Bundаy bog‘liqsizlik 

reаl jаrаyonlаr uchun judа kuchli chegаrаlаnishdek tuyulsаdа, kо‘plаb holаtlаr uchun bundаy chegаrаlаnish 

mutlаqo tаbiiydir. Yuqoridаgi kаbi mаsаlаlаrni о‘rgаnishdа eng yaqin model bо‘lgаni uchun hаm 
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tаrmoqlаnuvchi jаrаyonlаr nаzаriyasi keyingi vаqtdаrdа tez surаtlаr bilаn rivojlаnmoqdа. Tаrmoqlаnuvchi 

jаrаyonlаrni о‘rgаnishdа judа kuchli mаtemаtik аppаrаt bо‘lgаn hosil qiluvchi funksiyalаr аppаrаtidаn 

foydаlаnish imkoniyati bu rivojlаnishdаgi yanа bir muhim mezondir. Bugungi kungа kelib, tаrmoqlаnuvchi 

jаrаyonlаrning kо‘plаb modellаri mаvjud vа rivojlаnmoqdа. 1957 yildа B.А.Sevаstyanov tomonidаn 

tа’riflаngаn immigrаsiyali jаrаyonlаr 1948 - yildа АQShlik olimlаr Bellmаn vа Xаrrislаr tomonidаn 

kiritilgаn zаrrаchаlаr yoshigа bog‘liq jаrаyonlаr, migrаsiyali jаrаyonlаr, diffuziyali jаrаyonlаr, energiyali 

zаrrаlаr uchun tаrmoqlаnuvchi jаrаyonlаr, tug‘ilish vа о‘lim jаrаyonlаri vа hokаzolаr shulаr jumlаsidаndir. 

Deyarli bаrchа klаssik teoremаlаr dаstlаb Gаlton-Vаtson jаrаyonlаri uchun isbotlаngаn vа keyin boshqа 

modellаr uchun umumlаshtirilgаn.  

Uzluksiz vaqtli tarmoqlanuvchi jarayonlar ba’zi hollarda kimyoviy zanjir reaksiyalarining dastlabki 

bosqichlarini yaxshi tasvirlashi mumkin. Biror muhitda (masalan, molekulalar, ionlar, alohida atomlar va 

boshqalar) oz miqdordagi faol zarrachalar bo‘lsin. Faraz qilaylik, reaksiya faol zarrachalar muhit zarrachalari 

bilan to‘qnashganda sodir bo‘lsin. Har bir bunday to‘qnashuv natijasida ma’lum bir ehtimollik bilan ikkita 

faol zarracha paydo bo‘lishi yoki yutilish sodir bo‘lishi mumkin. Reaksiyaning dastlabki bosqichida faol 

zarrachalar kam bo‘lgani uchun ularning bir-biri bilan to‘nashuvini e’tiborsiz qoldirishimiz mumkin. So‘ngra 

faol zarralarning har biri boshqalardan mustaqil ravishda yangi faol zarrachalarni hosil qiladi. Shuning uchun 

bunday reaksiyani uzluksiz vaqt bilan mos keladigan tarmoqlanish jarayoni bilan juda yaxshi tasvirlash 

mumkin [12]. 

Quyida biz illyustratsiya sifatida tarmoqlanish jarayonlarini qo‘llash mumkin bo‘lgan turli misollarni 

keltiramiz. Xususan, bir necha turdagi zarrachalar bilan berilgan tarmoqlanuvchi jarayonlar kimyoviy zanjir 

reaksiyalarini tavsiflash uchun ko‘proq mos keladi, chunki reaksiyada odatda bir necha turdagi molekulalar 

yoki ularning qismlari ishtirok etadi. 

Xulosa. Tarmoqlanuvchi tasodifiy jarayonlarning nazariy asoslarini o‘rganish natijasida ushbu 

jarayonlarning murakkab ehtimollik tuzilmasiga ega ekani aniqlangan. Ularning rivojlanish mexanizmi har 

bir avlod elementlarining tasodifiy tarmoqlanish jarayoni orqali ifodalanadi, bu esa tizimning vaqt bo‘yicha 

o‘sishi yoki yo‘qolish ehtimolini aniqlash imkonini beradi. Tadqiqot davomida tarmoqlanuvchi 

jarayonlarning Markov xossasi, stasionarlik shartlari, shuningdek, Galton–Watson modeli misolida ularning 

o‘sish dinamikasi matematik jihatdan tahlil qilindi. 

Olingan nazariy natijalar tarmoqlanuvchi tasodifiy jarayonlarning matematik modellashtirish usullarini 

yanada takomillashtirish, ularning chegaraviy taqsimotlarini o‘rganish va turli sohalarda (biologiya, 

demografiya, epidemiologiya, axborot tizimlari) qo‘llash imkoniyatlarini kengaytirish uchun ilmiy asos 

yaratadi. Mazkur tadqiqot natijalari tarmoqlanuvchi jarayonlar nazariyasining rivojiga hissa qo‘shadi hamda 

murakkab tasodifiy tizimlarni tavsiflashda yangi tahliliy yondashuvlarni shakllantirishga xizmat qiladi. 
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Annotatsiya. Klassik D’alamber alomati — matematik analizda musbat hadli qatorlarning 

yaqinlashishini aniqlashda qo‘llaniladigan muhim alomatlardan biridir. Ushbu maqolada D’alamber 

alomatidagi limit mavjud bo‘lgan holatda uning Koshi alomati bilan ekvivalentligi isbotlanadi. Shuningdek, 

shunday  son uchun  limitining mavjudligi asosida qatorning yaqinlashishi yoki uzoqlashishi 

tahlil qilinadi. 

Kalit so‘zlar: limit, ketma-ketlik, Shtolts teoremasi, musbat ketma-ketlik, D’alamber alomati, Koshi 

alomati. 
 

ПРИЗНАК Д’АЛАМБЕРА И АНАЛОГИЧНЫЕ ПРИЗНАКИ В АНАЛИЗЕ 

СХОДИМОСТИ РЯДОВ 
 

Аннотация. Классический признак Д’Аламбера является одним из важных признаков в 

математическом анализе для определения сходимости рядов с положительными членами. В данной 

статье доказывается эквивалентность признака Д’Аламбера с признаком Коши в случае 

существования соответствующего предела. Кроме того, на основе существования предела  

для некоторого  проводится анализ сходимости или расходимости ряда. 

Ключевые слова: предел, последовательность, теорема Штольца, положительная 

последовательность, признак Д’Аламбера, признак Коши. 
 

THE D’ALEMBERT TEST AND ITS ANALOGUES IN THE ANALYSIS OF SERIES 

CONVERGENCE 
 

Abstrct. The classical D’Alembert test is one of the important criteria in mathematical analysis for 

determining the convergence of series with positive terms. In this article, the equivalence of the D’Alembert 

test with the Cauchy test is proved in the case when the corresponding limit exists. In addition, based on the 

existence of the limit  for some , the convergence or divergence of the series is analyzed. 

Keywords: limit, sequence, Stolz theorem, positive sequence, D’Alembert test, Cauchy test. 
 

Kirish. Cheksiz qatorlar ko‘plab amaliy masalalarni yechishda muhim ahamiyat kasb etadi, ilm-fan va 

muhandislikning turli sohalarida keng qo‘llaniladi. XVIII asrda fransuz matematigi J. D’Alamber tomonidan 

taklif etilgan D’Alamber alomati cheksiz qatorlarning yaqinlashishini aniqlashda asosiy usullardan biri 

bo‘ldi. D’Alamber limitlar nazariyasini qat’iy matematik asosda shakllantirish zarurligini ilgari suradi [10]. 

Aynan shu g‘oya D’Alamber alomatining rivojlanishiga olib keldi. 

1.1-teorema (Dalamber alomati [1]). Agar 

       (1.3) 

mavjud bo‘lsa, u holda: 

 agar  bo‘lsa,  qator yaqinlashuvchi; 

 agar  bo‘lsa,  qator uzoqlashuvchi; 

 agar  bo‘lsa,  qator yaqinlashuvchi yoki uzoqlashuvchi bo‘ladi. 

Bugungi kunda ham D’Alamber alomati oliy ta’lim muassasalarida matematik analiz fanining asosiy 

mavzularidan biri sifatida o‘qitilib kelinmoqda. Shu bilan birga, ushbu alomatning qo‘llanish doirasi 

cheklangan: agar 
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bo‘lsa, qatorning yaqinlashishi yoki uzoqlashishi haqida aniq xulosa chiqarib bo‘lmaydi. Aynan mana shu 

noaniqlik yangi yaqinlashish alomatlari — Koshi, Raabe, Gauss, Bertrand, va boshqalar — ishlab 

chiqilishiga turtki bo‘lgan. 

1.2-teorema (Koshi alomati [1]). Agar 

       (1.4) 

mavjud bo‘lsa, unda: 

 agar  bo‘lsa,  qator yaqinlashuvchi; 

 agar  bo‘lsa,  qator uzoqlashuvchi; 

 agar  bo‘lsa,  qator yaqinlashuvchi yoki uzoqlashuvchi bo‘ladi. 

1834-yilda nemis matematigi J. Raabe [11] D’Alamber alomatining umumlashtirilgan shakli sifatida 

tanilgan Raabe alomatini taklif etdi. Shuningdek, yana bir nemis matematigi K. Gauss qatorlar nazariyasida 

hozirda Gauss alomati nomi bilan mashhur bo‘lgan yaqinlashish alomatini ishlab chiqdi. 

Ali [9] tomonidan 2008-yilda ikkinchi nisbat alomat deb nomlangan yangi alomat taklif etilgan bo‘lib, 

u Raabe va Gauss alomatlarining o‘rnida qo‘llanishi mumkin. Quyidagi teorema ushbu alomatning 

matematik ifodasini beradi: 

1.3-teorema (ikkinchi nisbat alomat). — musbat hadlardan iborat ketma-ketlik bo‘lsin. Agar  

 
va  

. 

U holda 

a) Agar  bo‘lsa, u holda  qator yaqinlashadi. 

b) Agar  bo‘lsa, u holda  qator uzoqlashadi. 

c) Agar  bo‘lsa, u holda  qatorning yaqinlashishi yoki uzoqlashishi haqida yakuniy 

xulosa chiqarib bo‘lmaydi. 

Monoton kamayuvchi ketma-ketliklar uchun Koshining quyidagi natijasi mavjud: 

1.4-teorema.  — musbat va monoton kamayuvchi ketma-ketlik bo‘lsin. Shunda  qator 

yaqinlashishi uchun  qatorning yaqinlashishi zarur va yetarli. 

Keyingi holda, Ali [9] Ikkinchi nisbiy alomatda ishlatiladigan ikkita nisbatdan foydalangan holda 

nisbiy taqqoslash alomatining quyidagi ko‘rinishini isbotlagan: 

1.5-teorema (Ikkinchi nisbiy taqqoslash alomati).  va  musbat sonlardan iborat ketma-

ketliklar bo‘lsin. Faraz qilaylik, barcha yetarlicha katta  lar uchun quyidagi tengsizliklar bajariladi: 

 va . 

U holda: 

(i) agar  qatori yaqinlashsa,  qator ham yaqinlashadi; 

(ii) agar  qator uzoqlashsa,  qator ham uzoqlashadi. 

Ma’lumki, ko‘p hollarda,  va  ketma-ketliklarining nisbatidan tuzilgan  ketma-ketlikning 

yaqinlashuvchiligini tadqiq etishda Shtolts teoremasidan foydalaniladi. 

1.5-teorema (Shtolts [2]). Faraz qilaylik, —o‘suvchi va limiti cheksiz ketma-ketlik bo‘lsin, va 

 ketma-ketlik yaqinlashuchi bo‘lib, uning limit qiymati  ga teng bo‘lsin. Unda  ketma-ketlik 

ham yaqinlashadi va uning limiti ham  ga teng bo‘ladi. 

Shunday qilib, 

      (1.5) 

Ushbu maqolaning maqsadi — D’Alembert alomatida limit mavjud bo‘lgan taqdirda, Koshi 

alomatidagi limit ham mavjud bo‘lishini va bu ikki alomatning o‘zaro ekvivalentligini isbotlashdan iborat.  

Olingan natijalar. Faraz qilaylik, —musbat ketma-ketlik berilgan bo‘lsin. Quyidagi nisbat 

barcha  uchun aniqlangan bo‘lsin: 
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1.2-teorema. Agar  limiti mavjud bo‘lsa, u holda  bo‘ladi. 

Isbot. Avvalo,  ekanligini e’tiborga olamiz, chunki  bo‘lganda  bo‘ladi. Endi ikki 

holatni ko‘rib chiqamiz: 

1-holat.  bo’lsin. Har qanday  uchun  bo‘lganligi sababli mavjud  

shundayki  uchun . Shundan kelib chiqib: 

 
Bu tengsizlikdan 

 

kelib chiqadi. Ma’lumki,  va , shuning uchun 

 
Shuningdek,  ixtiyoriy tanlanganligi sababli . Musbatlikdan  

ekanligi ayon, demak, 

 
2-holat.  bo’lsin. Ma’lumki, har bir  ni oldingi hadlar orqali quyidagicha ifodalash mumkin: 

   (2.1) 

Endi bu tenglikning har ikki tomonidan -ildiz olamiz: 

  (2.2) 

Ushbu tenglikning ikki tomonini logarifmlab yozamiz: 

   (2.3) 

Endi ushbu ifodani tahlil qilib, Stolts teoremasini qo‘llash uchun zarur shaklga keltiramiz: 

 
Shunday qilib, 

   (2.4) 

Agar  mavjud bo‘lsa, unda . Endi quyidagi yig‘indini qaraymiz: 

 
U holda 

 
Stolts teoremasiga ko‘ra, agar  bo‘lsa, u holda 

 
Demak, 

    (2.5) 

Shunday qilib, (2.2) va (2.5) formulalardan quyidagi tenglikni hosil qilamiz: 
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Bundan 

 
Teorema isbotlandi. 

2.1-misol.  limitni hisoblang. 

Yechish.  teng bo’lib,  ga teng. Demak, , 2.1-teoremaga ko’ra 

. 

2.2-misol. Hisoblang 

 

Yechish.  teng. Shunday qilib, 

 
Nisbati 

 
Lekin , shuning uchun 

 
Bularni o‘rniga qo‘yib, oddiylashsak: 

 
Demak, 

 
bunga ko‘ra  va 2.1-teoremadan yoki yuqoridagi tahlildan . 

2.3-misol.  limitni hisoblang. 

Yechish.  topamiz 

 
Endi  bo‘lgani uchun: 

 
Ma’lum limitga ko‘ra: 

 
Shuning uchun: 

 
2.1-teoremaga ko‘ra, agar , u holda: 
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2.1-natija. Agar ushbu  limit mavjud bo‘lsa, u holda Dalamber va Koshi alomatlari 

ekvivalent bo‘ladi. 

Demak, (1.3) limit mavjud bo‘lganda Dalamber va Koshi alomatlari ekvivalent bo‘lib, ular qatorning 

yaqinlashishi yoki uzoqlashishi haqida bir xil xulosaga olib keladi. 

2.4-misol. Quyidagi qator  bo’lishini tekshiring: 

 
Yechish. (1.5) dan ma’lumki har bir  oldingi hadlar orqali quyidagicha ifodalash mumkin: 

   (2.6) 

Har ikki tomonidan -ildiz olib: 

   (2.7) 

Ushbu tenglikning ikki tomonini logarifmlab yozamiz: 

   (2.8) 

Endi ushbu ifodani tahlil qilib, Stolts teoremasini qo‘llash uchun zarur shaklga keltiramiz: 

 
Shunday qilib, 

     (2.9) 

Ma’lumki,  bo’ladi. Shunda . Endi quyidagi yig‘indini 

qaraymiz: 

 
U holda 

 
Stolts teoremasiga ko‘ra, agar  bo‘lsa, u holda 

 
Demak, 

.     (2.10) 

Shunday qilib, (2.8) va (2.10) formulalardan quyidagi tenglikni hosil qilamiz: 

 
Bundan 

 
Demak, 

 
Dalamber mezoniga ko‘ra esa: 
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Demak, . 

2.1-izoh. Agar (1.3) limit mavjud bo‘lmasa, bu holatda (1.4) limitning ham mavjud emasligini 

anglatmaydi. 

2.5-misol.  qatorni qaraylik, D’Alamber alomati: 

 
Agar  juft bo‘lsa: 

 
Agar  toq bo‘lsa: 

 
Demak, 

 limit mavjud emas. 

Koshi alomati: 

 
2.3-teorema. Agar  shunday son topilib, ushbu  

       (2.11) 

limit mavjud bo‘lsa, u holda 

(a) agar  bo‘lsa, (1.2) qator yaqinlashuvchi bo‘ladi; 

(b) agar  bo‘lsa, (1.2) qator uzoqlashuvchi bo‘ladi. 

Isbot. (a) Faraz qilaylik, (2.11) limit mavjud bo‘lin.  bo‘lganligi sababli, shunday kichik  

sonni tanlash mumkinki, 

       (2.12) 

Limit ta’rifiga ko‘ra, shunday  son topiladiki, barcha  lar uchun quyidagi tengsizlik 

bajariladi: 

       (2.13) 

Demak, 

, .     (2.14) 

Endi (2.14) tengsizlikni ketma-ket qo‘llaymiz: 

  

va umuman olganda, barcha  uchun 

.      (2.15) 

Endi ixtiyoriy  ni qaraymiz. U holda  ko‘rinishda yozish mumkin, bu yerda 

. 

(2.15) dan quyidagi baho hosil bo‘ladi: 

.       (2.16) 

Endi berilgan (1.2) qatorni quyidagi geometrik qator bilan solishtiramiz: 

     (2.17) 

u  bo‘lgani uchun yaqinlashuvchi bo‘ladi. 
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(2.16) dan ko‘rinadiki,  hadlari ushbu geometrik qator hadlari bilan chegaralangan, shuning uchun 

(1.2) qator yaqinlashuvchi bo‘ladi. 

(b) Faraz qilaylik, 

.       (2.18) 

Demak, limit ta’rifiga ko‘ra, shunday musbat son  va natural son  topiladiki, barcha  lar 

uchun 

. 

Bu tengsizlikdan: 

.      (2.19) 

Endi (2.19) ni ketma-ket  marta qo‘llaymiz: 

 

 
…, 

     (2.20) 

Endi  bo‘lgani uchun (2.20) dan quyidagini olamiz: 

 
Shuning uchun 

 
Demak,  bo‘lsa,  hadlari nolga intilmaydi. Shuning uchun (1.2) qator uzoqlashuvchi bo‘ladi. 

2.2-izoh. Agar  bo‘lsa, (1.2) qatorning yaqinlashishini aniqlash uchun boshqa usul qo‘llanadi. 

2.3-izoh. Agar  bo‘lsa, Dalamberning klassik alomatiga aylanadi. 

Xulosa. Maqolada D’Alamber va Koshi alomatlari o‘rtasidagi bog‘liqlik isbotlandi. Agar 

 mavjud bo‘lsa, bu ikki alomat ekvivalentligi ko‘rsatildi. Shuningdek,  

bo‘lganda,  uchun qator yaqinlashishi,  uchun esa uzoqlashishi isbotlandi. Bu natijalar 

D’Alamber alomatining qo‘llanish doirasini kengaytiradi va qatorlarning yaqinlashishini tahlil qilishda yangi 

imkoniyatlar yaratadi. 
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IKKI O‘LCHAMLI SIMPLEKSDA ANIQLANGAN    TARTIBLI BISTOXASTIK 

OPERATORLAR OILASI DINAMIKASI 
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Matematik analiz va differensial tenglamalar kafedrasi o‘qituvchisi 

azizbekutayev42@gmail.com  
 

Annotatsiya. Ushbu ish ikki o’lchamli simpleksda aniqlangan nochiziqli bistoxastik operatorlar 

dinamikasini o’rganishga bag’ishlangan. Ikki o’lchamli simpleksda    tartibli bistoxastik 

operatorlarning aniq bir oilasi qurilgan. Ushbu operatorlarning invariant to’plamlar va qo’zg’almas 

nuqtalar xossalari o’rganilgan. Ko’rib chiqilayotgan operatorlar oilasi uchun qo’zg’almas nuqtalar 

to’plami va traektoriyalarning xatti-harakati tavsiflovchi teorema shakllantirilgan va isbotlangan. 

Kalit so‘zlar: qo'zg'almas nuqta, stoxastik operator, bistoxastik operator, simpleks, majorizatsiya. 
 

ДИНАМИКА СЕМЕЙСТВА БИССТОХАСТИЧЕСКИХ ОПЕРАТОРОВ   ГО 

ПОРЯДКА, ОПРЕДЕЛЁННЫХ НА ДВУМЕРНОМ СИМПЛЕКСЕ 
 

Аннотация. Данное исследование посвящено изучению динамики нелинейных 

бистохастических операторов, определённых на двумерном симплексе. На двумерном симплексе 

построено конкретное семейство бистохастических операторов порядка  . Исследованы 

свойства инвариантных множеств и неподвижных точек этих операторов. Для рассматриваемого 

семейства операторов сформулирована и доказана теорема, описывающая множество 

неподвижных точек и поведение траекторий. 

Ключевые слова: неподвижная точка, стохастический оператор, бистохастический 

оператор, симплекс, мажоризация. 
 

DYNAMICS OF THE FAMILY OF    TH ORDER BISTOCHASTIC OPERATORS 

DEFINED ON A TWO-DIMENSIONAL SIMPLEX 
 

Abstract. This work is devoted to the study of the dynamics of nonlinear bistochastic operators defined 

on a two-dimensional simplex. A specific family of bistochastic operators of order   on the two-

dimensional simplex is constructed. The properties of the invariant sets and fixed points of these operators 

are investigated. A theorem describing the set of fixed points and the behavior of trajectories for the 

considered family of operators is formulated and proven.  

Keywords: fixed point, stochastic operator, bistochastic operator, simplex, majorization. 
 

Kirish. Tabiatshunoslik, aholi genetikasi, tur populyatsiyasi va boshqa ko'plab sohalarda jarayonning 

vaqt o'tishi bilan o'zgarishini modellashtirish muhim ahamiyatga ega. Bunday jarayonlarni o'rganishda 

diskret vaqtli dinamik sistemalarlar nazariyasi asosiy vositadir. Shu o'rinda, stoxastik operatorlar orqali 

ifodalangan diskret dinamik sistemalar alohida o'rin tutadi, chunki ular ehtimollik taqsimotlarining 

evolyutsiyasini tavsiflash imkonini beradi. 

Stoxastik operatorlar orasida, barcha kordinatalari bo'yicha simmetrik xususiyatga ega bo'lgan 

bistoxastik operatorlar alohida o'rganiladi. Ushbu operatorlar majorizatsiya tushunchasi bilan chambarchas 

bog'liq bo'lib, ma'lum bir tartibni saqlab qolish xususiyatiga ega. Shuning uchun ularni o'rganish nafaqat 

matematik, balki qo'llash jihatidan ham muhimdir. 

Ikki o'lchamli simpleks - bu uch komponentli ehtimollik taqsimotlarining to'plami bo'lib, eng soddagi 

chiziqli bo'lmagan dinamikani o'rganish uchun qulay model hisoblanadi. Ushbu maqolada ikki o'lchamli 

simpleksda aniqlangan, ma'lum bir tartibdagi chiziqli bo'lmagan bistoxastik operatorlarning bir oilasi 

qaraladi. 

Ishning asosiy maqsadi shu operatorlar oilasi uchun invariant to'plamlarni, operatorning qo`zg`almas 

nuqtalar to'plamini topish va boshlang'ich shartga bog'liq ravishda traektoriyalarning xatti-harakatini (ya'ni 

limit xossasini) aniqlashtirishdan iborat. Isbotlangan teorema orqali, ko'rib chiqilayotgan operatorlar 

dinamikasining barcha asosiy xususiyatlari to'liq tavsiflanadi. 

mailto:azizbekutayev42@gmail.com
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Asosiy ta’rif va tushunchalar. Bizga {1,2,3,..., }qN q N    (bu yerda q N ) to’plam va 

berilgan bo’lsin. 

1

1 2

1

{ ( , ,..., ) , 1, 0, }
m

m m

m j j m

j

S x x x x R x x j N





     
 

to’plamga  dagi 1m  o’lchamli simleks deyiladi. 
1mS 

  orqali 
1mS 
 simpleksning ichki nuqtalari 

to`plamini belgilaymiz,  ya`ni 

1

1 2

1

{ ( , ,..., ) , 1, 0, }.
m

m m

m j j m

j

S x x x x R x x j N

 



       

1mS 
 simpleksning chegarasini  1mS   orqali belgilaymiz. 

( ) ( ) ( )

1 2( , ,..., ), ( )k k k

k m me e e e k N   

orqali 
1mS 
 simpleksni uchini belgilaymiz, ya`ni  

 
( ) 1k

ke    va 
( ) 0k

je   barcha , mj k k N   uchun. 

 Elementlari haqiqiy sonlardan tashkil topgan m m  kvadrat matritsani ( )ijA a  orqali belgilaymiz. 

Agar A - m m  kvadrat matritsa elementlari uchun  0, ,ij ma i j N   va 
1

1,
m

ij m

i

a j N



   tengliklar 

o`rinli bo`lsa, u holda A  stoxastik matritsa deyiladi. nS  orqali n N  ta elementning o`rin almashtirishlari 

guruppasini belgilaymiz. 

Tarif 1.1. Ixtiyoriy  N   uchun, quyidagi operator   

1 2 1 2: ( , ,..., ) ( ) ( ( ), ( ),..., ( ))S
m m

m mx x x x x x x x            (1.1) 

  -tartibli stoxastik operator deyiladi, agar S   va 

1 2 1 2

1 2

... ,

, ,..., 1

( ) ... , ,
m

m

k i i i k i i i m

i i i

x P x x x x k N
 



 



                    (1.1.1) 

bu yerda 

1 2 ... , 0, 1, , 1, , 1,i i i k jP i m j k m


                                     (1.1.2) 

1 2 (1) ( 2) ( )... , ... , , 1,i i i k i i i kP P k m
    

                                              (1.1.3) 

ixtiyoriy 
mS   o`rin almashtirish uchun, va 

1 2 ... ,

1

1, 1, , 1, .
m

i i i k j

k

P i m j





                                              (1.1.4) 

Yuqoridagi  (1.1.2)  - (1.1.4)  shartlardan   

1 2

1

( ) ( ... ) ,
m

m

k m

k

x x x x x


      

bo`lishi kelib chiqadi. Ko`rinib turibdiki, S  operator 
1mS 
 simpleksni o`zini o`ziga akslantiruvchi 

operartordir. 1   bo`lganda S  operator chiziqli stoxastik operator deyiladi, 2   bo`lganda S  operator 

kvadratik  stoxastik operator deyiladi, 3   bo`lganda S  operator kubik  stoxastik operator deyiladi va 

hokazo. 
[ ]

S


 orqali   - tartibli stoxastik operatorni belgilaymiz. 

Elementlari haqiqiy sonlardan tashkil topgan m m  kvadrat matritsani ( )ijA a  orqali belgilaymiz. 

Agar A - m m  kvadrat matritsa elementlari uchun    0ija  ,    , 1,mi j     
1

1
m

ij

i

a


 ,   
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, 1,mi j    
1

1
m

ij

j

a


 , , 1,mi j   tengliklar o`rinli bo`lsa, u holda A  matritsa bistoxastik 

matritsa deyiladi. Ba`zan bistoxastik matritsa, 
m

dagi bistoxastik operator deb ham ataladi. Ko`rishimiz 

mumkinki chiziqli bistoxastik operator uchun 
1 1( )m mA S S   munosabat o`rinli bo`ladi.  

Endi umumiy holda bistoxastik operator ta`rifini kiritaylik. Ixtiyoriy 
1 2(x , x ,..., x ) m

mx R   

uchun quyidagi
     1 2

(x , x ,..., x )
m

x   ga x  ning qayta tartiblanishi deyiladi, bu yerda 

     1 2
x x ... x

m
     . 

Ta’rif 1.2. Faraz qilaylik, 
1, mx y S   bo`lsin. Agar barcha 1,m 1k    uchun    

1 1

k k

i i
i i

x y
 

   

tengsizlik o`rinli bo`lsa,  u holda  x  element y ga  majorizatsiyalashgan (kattalashgan) deyiladi va   

x y   ko`rinishida belgilanadi. 

Ta’rif 1.3. Agar  -tartibli stoxastik operator uchun 
[ ] 1, .S

mx x x S    munosabat o`rinli 

bo`lsa,  -tartibli bistoxastik operator deyiladi.  

 -tartibli bistoxastik B  operatorni 
[ ]

B  ko`rinishida belgilaymiz. 
2S   Simpleksda bistoxastik operatorlar oilasi. 

Lemma 1. Ixtiyoriy  
1

1 2( , ,..., ) m

mx x x x S    va ixtiyoriy  0;1 , 1,j j m    uchun 

1 2 3 1 1 2 2 3 3 1 2 3min{ , , } max{ , , }x x x             tengsizlik o`rinli bo`ladi. 

Lemma 2. Agar 1a   bo`lsa, u holda ixtiyoriy (x) x bh a  va ixtiyoriy 0x R  uchun 

(n)

0(x )
1lim

n

b
h

a




 tenglik o`rinli bo`ladi. 

Quyidagi  [1]

[1] 2 2:B S S


   chiziqli bistoxastik operatorlar oilasini qaraylik 

[1]

'

1 1

[1] '

2 2 3

'

3 2 3

,

: (1 ) ,

(1 )

x x

B x x x

x x x


 

 

 


  


  

 

bu yerda  (0,1) .  

Bizga   ikkita [1]
1

[1]B
 , [1]

2

[1]B
 chiziqli bistoxastik operatorlar oilasi berilgan bo`lsin. Bu operatorlar 

yordamida quyidagi [ 2] [1] [1]
1 2

[2] [1] [1]

1 2 3( )B x B x x B
  

    kvadratik stoxastik operatorni hosil qilamiz, ya`ni  

[ 2]

'

1 1 1 2 3

[2] ' [2] [2]

2 2 3

' [2] [2]

3 2 3

( ),

: (1 ) ,

(1 )

x x x x x

B x x x

x x x


 

 

   


  


  

 

Bu yerda 
[2] [1] [1]

1 1 1 1 2( ) (1 )x x x      ga teng. 
[ 2 ]

1( )x  parameter 
2x S  ning birinchi 

kordinatasiga bog`liq funksiya bo`lib, [ 2]

[2]B
  operator dinamikasini o`rganayotganimizda o`zgarmas son 
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vazifasini bajaradi, chunki [ 2]

[2]B


 operatorning 
2x S  ga ta`siri x ning dastlabki kordinatasini qo`zg`almas 

qoldiradi. Lemma 1 ga ko`ra 
[ 2 ] 1  . 

Huddi shu metodni davom ettirish natijasida,  -tartibli bistoxastik 

[ ] [ 1] [ 1]
1 2

[ ] [ 1] [ 1]

1 2 3( )B x B x x B  

  

   

     operatorni hosil qilamiz, ya`ni  

[ ]

' 1

1 1 1 2 3

[ ] ' [ ] [ ]

2 1 2 1 3

' [ ] [ ]

3 1 2 1 3

( ) ,

: ( ) (1 ( )) ,

(1 ( )) ( )

x x x x x

B x x x x x

x x x x x





  



 

 

 

   


  


  

                              (3.1) 

Bu yerda 
[ ] [ 1] [ 1]

1 1 1 1 2 3 2 1( ) ( ) ( ) ( )x x x x x x         ga teng.  [ ]

1x


  funksiya 
2x S  

ning faqat dastlabki kordinatasiga bog`liq bo`lganligi uchun, [ ]

[ ]B 




 operator dinamikasini 

o`rganayotganimizda o`zgarmas son vazifasini bajaradi, chunki [ ]

[ ]B 




 operatorning 

2Sx  ga ta`siri x ning 

dastlabki kordinatasini qo`zg`almas qoldiradi. Lemma 1 ga ko`ra  [ ]

1 1x


  . 

Teorema 1. Ixtiyoriy [0;1]   va     uchun,  
2

1 2 3 1{ ( , , ) , }S x x x x S x      to`plam,  

[ ]

[ ]B 




operatorning invariant to`plamdir. 

2. [ ]

[ ]B 




 operatorning 

2S  simpleksdagi qo`zg`almas nuqtalari to`plami, uchlari 1e   va  

(0) 1 1
0, ,

2 2
u

 
  
 

 nuqtalarda bo`lgan kesmadan  iborat.  

3. Ixtiyoriy    [ ]

(0) (0) (0) (0) 2 [ ]

1 2 3, , \ Bx x x x S Fix 




   uchun 

 [ ]

(0) (0)
[ ] (n) (0) (0) 1 1

1

1 1
lim , ,

2 2n

x x
B x x





  
  
 

 

tenglik o`rinli bo`ladi. 

Isbot: 1) 3.1 – operatordan ko`rishimiz mumkinki, 
'

1 1 1 2 3 1(x x x )x x x     tenglik o`rinli. Bundan 

kelib chiqadiki S  to`plam, 3.1 operator uchun invariant to`plamdir. 

2) 3.1 operatorning qo`zg`almas nuqtasi 

1

1 1 1 2 3

[ ] [ ]

2 1 2 1 3

[ ] [ ]

3 1 2 1 3

( ) ,

( ) (1 ( )) ,

(1 ( )) ( )

x x x x x

x x x x x

x x x x x



 

 

 

 

   


  


  

                          (3.2) 

sistemaning yechimi demakdir.  1 2 3 1x x x    va  
[ ]

1( ) (0,1)a x   ekanligini hisobga olsak, 3.2 

sistemaning yechimi  2 3x x  tenglikni qanoatlantiruvchi 
1mS 

 simpleksning nuqtalaridan iborat ekanligi 

kelib chiqadi. Demak, [ ]

[ ]B 




 operatorning  

1mS 
 simpleksdagi qo`zg`almas nuqtalari to`plami, uchlari 1e   

va  (0) 1 1
0, ,

2 2
u

 
  
 

 nuqtalarda bo`lgan ko`pyoqdan iborat. 

3)  Ko`rinib turibdiki, Ixtiyoriy    [ ]

(0) (0) (0) (0) 2 [ ]

1 2 3, , \ Bx x x x S Fix 




   uchun,

( ) (0)

1 1

nx x tenglik 

o`rinli. Operatorning keyingi kordinatasi uchun  
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' [ ] [ ] [ ] [ ]

2 1 2 1 3 1 2 1 1( ) (1 ( )) (2 ( ) 1) (1 ( ))(1 )x x x x x x x x x               

tenglik o`rinli bo`ladi. 
[ ] [ ]

2 1 2 1 1( ) (2 ( ) 1) (1 ( ))(1 )h x x x x x        deb belgilaylik. 

[ ] [ ]

1 1( ) (0;1) 2 ( ) 1 1a x x      tengsizlik va  lemma 2 ga ko`ra  

2

(0)
(n) (n) 1

2

1
( )

2lim lim
n n

x
x h x

 


  . 

Demak ,  ixtiyoriy    [ ]

(0) (0) (0) (0) 2 [ ]

1 2 3, , \ Bx x x x S Fix 




   uchun 

 [ ]

(0) (0)
[ ] (n) (0) (0) 1 1

1

1 1
lim , ,

2 2n

x x
B x





  
  
 

x  

tenglik o`rinli bo`ladi.  
Xulosa. Ushbu ishda ikki o'lchamli simpleksda aniqlangan, ma'lum bir tartibdagi chiziqli bo'lmagan 

bistoxastik operatorlarning aniq bir oilasi qurildi va ularning dinamik xossalari o'rganildi. 

Quyidagi asosiy natijalar isbotlandi: Operator uchun  1 , 0,1x    shartni qanoatlantiruvchi 

to'g'ri chiziq invariant to'plam ekanligi ko'rsatildi. Bu shuni anglatadiki, agar tizim boshlang'ich holatda 

ushbu to'g'ri chiziqda joylashsa, u butunlay shu to'plamda qoladi. Operatorning qo`zg`almas  nuqtalari 

to'plami kontinum quvvatli to`plam ekanligi isbotlandi. 

Har qanday boshlang'ich nuqta uchun operatorning qo'llanishi natijasida hosil bo'lgan ketma-ketlik 

simpleksning ichiga, aniqrog'i, dastlabki koordinataga bog'liq ravishda qo`zg`almas nuqtalarga yaqinlashishi 

ko'rsatildi. Bu esa, dinamikaning uzoq muddatli xatti-harakati to'g'risida aniq tasavvur beradi. Olingan 

natijalar ko'rib chiqilayotgan bistoxastik operatorlar oilasi dinamikasini to'liq tavsiflash imkonini beradi va 

chiziqli bo'lmagan stoxastik operatorlar nazariyasiga muhim hissa hisoblanadi. 
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Аннотация. В данной работе изучается задача Коши для модифицированного уравнения 

Кортевега-де Фриза с самосогласованным источником в классе функций конечной плотности, в 

случае простых собственных значений соответствующей спектральной задачи. Исследуется 

эволюция данных рассеяния для связанного несамосопряжённого оператора Дирака, возникающего 

при интегрировании данного уравнения. Особое внимание уделено корректности постановки задачи 

Коши. Выводятся эволюции данных рассеяния несамосопряжённого оператора Дирака с простыми 

собственными значениями, потенциал которого является решением уравнения Кортевега-де Фриза с 

самосогласованным источником, в случае конечной плотности. Полученные результаты могут 

быть использованы в спектральной теории линейных операторов, в математической физике при 

интегрировании нелинейных уравнений и при решении некоторых задач физики плазмы. 

Ключевые слова: метод обратной задачи рассеяния, модифицированное уравнение Кортевега-

де Фриза (мКдФ), оператор Дирака, решение Йоста, собственное значение, собственная функция, 

данные рассеяния, класс функций, имеющих конечную плотность. 

 

MKDF TENGLAMANI ODDIY XUSUSIY QIYMATLAR HOLIDAGI CHEKSIZLIK 

FUNKSIYALARI SINFIDA O'Z-O'ZI BO'LGAN MANBA BILAN INTEGRATRIYA 

 

Annotatsiya. Ushbu ishda moslangan manbali modifitsirlangan Korteveg–de Friz (mKdF) 

tenglamasini chekli zichlikli funksiyalar sinfida sochilish nazariyasining teskari masala usulida karrasiz xos 

qiymatlar holida o’rganiladi. Tenglamani integrallash jarayonida paydo bo‘ladigan o‘z-o‘ziga qo‘shma 

bo‘lmagan Dirak operatori uchun sochilish nazariyasi berilganlarining evolyutsiyasi tadqiq etiladi. Koshi 

masalasining korrektligiga alohida e’tibor berilgan. Potensiali moslangan manbali modifitsirlangan 

Korteveg–de Friz (mKdF) tenglamasining chekli zichlikli funksiyalar sinfida yechimi bo’lgan o’z-o’ziga 

qo’shma bo’lmagan Dirak operatori uchun karrasiz xos qiymatlar holida sochilish nazariyasining 

berilganlari evolyutsiyasi keltirib chiqarilgan. Olingan natijalarni chiziqli operatorlarning spektral 

nazariyasida, plazma fizikasining ba’zi masalalarini yechishda kelib qoladigan matematik fizikaning 

nochiziqli tenglamalarini integrallashda qo’llash mumkin. 

Kalit so‘zlar: sochilish nazariyasining teskari masalasi, modifitsirlangan Korteveg–de Friz tenglamasi 

(mKdF), Dirak operatori, Yost yechimi, xos qiymat, xos funksiyasi, sochilish nazariyasining berilganlari, 

chekli zichlikli funksiyalar sinfi. 

 

INTEGRATION OF THE MKDF EQUATION WITH A SELF-CONSISTENT SOURCE IN 

THE CLASS OF FINITE DENSITY FUNCTIONS IN THE CASE OF SIMPLE EIGENVALUES 

 

Abstract. This work investigates the Cauchy problem for the modified Korteweg–de Vries equation 

with a self-consistent source in the class of functions of finite density, in the case of simple eigenvalues of the 

corresponding spectral problem. The evolution of the scattering data is studied for the associated non-
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selfadjoint Dirac operator that arises in the integration of this equation. The study devotes significant 

attention to ensuring that the Cauchy problem is correctly posed. The evolution formulas for the scattering 

data of the non-selfadjoint Dirac operator with simple eigenvalues are derived, where the potential is a 

solution of the modified Korteweg–de Vries equation with a self-consistent source in the finite-density case. 

The obtained results may be applied in the spectral theory of linear operators, in mathematical physics for 

the integration of nonlinear equations, and in solving certain problems of plasma physics. 

Keywords: inverse scattering problem method, modified Korteweg-de Vries equation (mKdV), Dirac 

operator, Jost solution, eigenvalue, eigenfunction, scattering data, class of functions having finite density. 

 

Введение. Модифицированное уравнение Кортевега-де Фриза (мКдФ) 
26 0t x xxxu u u u    

встречается при решении некоторых задач физики плазмы. В работе [1] это уравнение было 

проинтегрировано методом обратной задачи рассеяния для системы Дирака. Метод обратной задачи 

рассеяния ведет свое начало с работы [2], в которой он представлен как метод решения задачи Коши 

для уравнения Кортевега-де Фриза. 

Применение метода обратной задачи для уравнения мКдФ опирается на задачу рассеяния для 

оператора Дирака вида: 

( , )

( )

( , )

d
u x t

dx
L t i

d
u x t

dx

 
 

  
   
 

 

на всей оси. Обратная задача рассеяния для оператора Дирака изучалась в работах 

М.Г.Гасымова, Б.М.Левитана [3], В.Е.Захарова, А.Б.Шабата [4], И.С.Фролова [5], Л.П.Нижника, 

А.Б.Хасанова [6], Л.А.Тахтаджяна, Л.Д.Фаддеева [7] и др. 

Применение метода обратной задачи рассеяния для оператора Дирака к интегрированию 

нелинейных эволюционных уравнений изучалось в работах М.Абловица, Д.Каупа, А.Ньюэлла и 

Х.Сигура [8], В.Е.Захарова, Л.А.Тахтаджяна, Л.Д.Фаддеева [9], В.К.Мельникова [10], А.Б.Хасанова, 

У.А. Хоитметова [11], Г.У.Уразбоева, А.Б.Хасанова [12], Г.У.Уразбоева, К.А.Мамедова [13], 

А.Б.Хасанова, К.А.Мамедова [14] и др. Именно в работе [10] был введён термин «самосогласованный 

источник». Самосогласованность источника понимается в том смысле, что правая часть 

рассматриваемого эволюционного уравнения является комбинацией собственных функций 

соответствующей спектральной задачи, потенциал которой есть решение рассматриваемого 

эволюционного уравнения. 

Отметим, также, что в работе Ж.Леона и А.Латифи [15] приведена конкретная 

физическая задача, которая сводится к решению уравнения КдФ с источником.  

В связи с применением к конкретным физическим задачам возникла необходимость 

рассмотрения нелинейных эволюционных уравнений не только в классе «быстроубывающих» 

функций, но в классах функций специального вида, а именно периодических, ступенчатых, 

имеющих конечную плотность и др. 

Следует отметить, что в работе А.Б.Яхшимуратова, М.М.Хасанова [16] было интегрировано 

уравнение мКдФ с самосогласованным источником в классе периодических функций, а в случае 

конечной плотности, т.е. в случае ( , )u x t с  при x  , с R  изучалась в работах 

Н.Н.Романовой [17], К.А.Мамедова [18] и др. 

Рассмотрим систему уравнений: 
2

2 2 2

1 2

1

6 ( ),

, 1,2, ..., 2 ,

N

t x xxx k k

k

k k k

u u u u Ф Ф

LФ Ф k N




   


  


                                 (1) 

при начальном условии 

0( ,0) ( ), ,u x u x x R                                                    (2) 

где 
0( )u x с  при ,х   c R . Здесь начальная функция 

0( )u x  обладает следующими 

свойствами: 
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1) 0(1 ) ( )x u x с dx





    ;                                                                       (3) 

2) Оператор (0)L  имеет ровно 2N  простых собственных значений 
1 2 2(0), (0), ..., (0)N   . 

В рассматриваемой задаче 1 2( , )T

k k kФ Ф Ф  – собственная вектор-функция оператора ( )L t  

соответствующая собственному значению k  так, что 

1 2 ( ), 1,2, ..., 2k k kФ Ф dx A t k N





  .                                    (4) 

Здесь ( )kA t  заданные, непрерывные, ненулевые функции, которые удовлетворяют условиям 

( ) ( )k nA t A t  при  k n   .                                       (5) 

Предполагаем, что функция ( , )u x t  обладает достаточной гладкостью и достаточно быстро 

стремится к своим пределам при ,x  т.е. 

3

1

( , )
(1 ) ( , )

k

k
k

u x t
x u x t с dx

x





 
     

 
 .                          (6) 

Основная цель данной работы – получить представление для решения 

( , ),u x t 1( , ),kФ x t
2( , ), 1, 2, ..., ,kФ x t k N задачи (1)–(5) в классе функций (6), в рамках метода 

обратной задачи рассеяния для оператора )(tL . 

Задача рассеяния. Рассмотрим систему уравнений 

1 1 2

2 2 1

( ) ,

( ) ,

x

x

у i у u x у

у i у u x у





 


  
                                                   (7) 

на всей оси ( )x  , с потенциалом ( )u x , удовлетворяющим условию: 

(1 ) ( )x u x с dx





    , c R .                                        (8) 

Видно, что с помощью оператора 

( )

( )

d
u x

dx
L i

d
u x

dx

 
 

  
   
 

 

и вектор-функции 1 2( , )Tу у у  систему (7) можно переписать в виде: 

Lу у .                                                         (9) 

При условии (8) система уравнений (9) обладает решениями Йоста со следующими 

асимптотиками 

1

( , ) ~ ,( )
ip xx ei p

c

  


 
 

  
 

при  x , 
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( , ) ~ ,

1

ip x

i p

x ec



 

 
 
   

при  x , 

( )

( , ) ~ ,

1

iр x

i p

x ec



  

 
 
  
 

 при  x , 
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1

( , ) ~ ,( )
iр xx ei p

c

  

 
 

  
 

 при  x . 

Здесь 
2 2p с   и ветвь квадратного корня фиксируется условием: 

Im ( ) 0p     при  Im 0  .                                      (10) 

В дальнейшем мы часто будем опускать зависимость функции ( )p   от  . Таким образом, в 

формулах, где участвует ( )p   и  , всегда подразумевается, что p  является функцией от  . 

(Отметим, что   в общем случае, не является комплексным сопряжением к  ). При действительных 

 , пары вектор-функций  ,   и  ,   являются парами линейно независимых решений для 

системы уравнений (9), поэтому 

( , ) ( ) ( , ) ( ) ( , )x a x b x         ,  ( Im 0  ),                  (11) 

( , ) ( ) ( , ) ( ) ( , )x a x b x          ,   Im 0  ,                (12) 

где 

 

 

,
( )

,

W
a

W

 


 
 ,  

 

 

,
( )

,

W
b

W

 


 
 ,  

2 2
( ) ( ) 1a b   . 

Риманова поверхность   функции ( )p   состоит из двух экземпляров   и 
  комплексной 

плоскости C  с разрезами по мнимой оси от ic  до ic . Условие (10) однозначно определяет 

аналитическую продолжение функции ( )a   на лист  , исключая точки ветвления ic   . 

Невещественные нули функции ( )a   соответствуют собственным значениям оператора ( )L t  на 

листе  . Собственные значения оператора ( )L t  на листе 
  совпадают с нулями функции ( )a  . 

Итак, числа 1{ , }N

k k k    являются собственными значениями оператора ( )L t , и других собственных 

значений этот оператор не имеет. Предположим, что все собственные значения оператора ( )L t  

простые, так, что 

( , ) ( , )k k kx C x    , ( , ) ( , )k k kx C x    , 1,k N . 

Справедливы следующие равенства: 

2

1

( , )
( , )

( , )

x
x

x

 
 

 

 
  

  
, 

2

1

( , )
( , )

( , )

x
x

x

 
 

 

 
  

  
,                     (13) 

( ) ( ) , ( ) ( ) , , , 1,k k k ka a b b C C k N             . 

Для функции ( , )x   справедливо следующее интегральное представление 

( ) ( )

ψ( , ) ( , ) ,

1 1

iр x iр s

x

i p i p

x e x s e dsc c

 


    

    
      
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K                (14) 

где 

1 2

2 1

( , ) ( , )
( , )

( , ) ( , )

K x s K x s
x s

K x s K x s

 
  

 
K . 

В представлении (14) ядро ( , )x yK  не зависит от   и связано с ( )u x  с помощью равенства 

2( ) 2 ( , )u x с K x x  .                                        (15) 

Компоненты ядра ( , )x yK  при y x  являются решениями системы интегральных уравнений 

2 1 11 2

2 12 21

( , ) ( ) (s )( , ) ( , )2
0,

( , ) ( , )( ) ( )( , ) x

K x y F x y F yK x s K x si
ds

K x s K x sF x y F s yс K x y

       
         

      
  

где 
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1

1 1

( ) ( ) ( )n n

N N
ip z ip z

n n n n n n

n n

i
F z p e p e

c
    

 

 
     

 
   

   
1 1

( ) ( ) ( ) ( ) ,
2 2

ipz ipzi
r r e dp r r e d

c
    

 

 

 

 
      

 
   

2

1 1

1 ( ) ( )
( ) ,

2
n n

N N
ip z ip z ipz

n n

n n

r r
F z e e e d

р

 
  







  

  
   
 
    

( )
( ) , ,

( ) ( ) ( )

n n
n n

n n n n

C Cb i i
r

a p a p a


  

  
    . 

Определение. Набор величин 

( )
( ) , ; , Im 0; , 1,

( )
k k k

b
r R C k N

a


   



 
    

 
 

называется данными рассеяния для системы уравнений (9). 

По данным рассеяния потенциал ( )u x  определяется с помощью равенства (15). 

Отметим, что вектор-функции 

( )

( ) , 1,
( )

n
n

n

n

d
C

d
h x n N

a

 
 








                                  (16) 

являются решениями уравнений 
nLY Y . 

Заметим, что по предположению оператор L  имеет только простые собственные значения, 

поэтому ( )na   отличны от нуля. 

Кроме того, функции ( )nh x  обладают следующими асимптотиками: 

( )

~ при ,

1

п п

п
n n

i р
iр x

h С e xc

  
   
  
 

 

1

~ при .( )
п

n п п

iр x
h e xi р

c



 
    

                                

(17) 

Согласно (17) справедливо равенство: 

  1 2 2 1 2

2 ( )
, , 1,n п п п

n n n n n n

C р р
W h h h n N

с


  


    .                  (18) 

Лемма 1. Если вектор-функции Y  и Z  являются решениями уравнений LY Y  и LZ Z , 

то для их компонент имеют место равенства: 

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

( ) ( )( ),

( ) ( )( ).

d
y z y z i y z y z

dx

d
y z y z i y z y z

dx

 

 

    

    

 

Справедливость этой леммы доказывается непосредственной проверкой. 

Эволюция данных рассеяния. Пусть потенциал ( , )u x t  в системе уравнений (1) является 

решением уравнения 
26 ( , )t x xxxu u u u G x t   ,                                            (19) 

где G  достаточно быстро стремится к нулю при x . Тогда имеет место следующая 

лемма. 

Лемма 2. Если потенциал ( , )u x t  является решением уравнения (19) в классе функций (6), то 

данные рассеяния системы уравнений (9) с потенциалом ( , )u x t  зависят от t  следующим образом 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  34 
 

4
3 2 2 2

1 22 2 2
(8 12 ) ( ) , (Im 0),

4 ( )

dr c
ip с ip r G dx

dt a p p
  








     
   

2
3 2

1 1 2 28 12 ( ) ,
2 ( )

n
n n n n n n n

n n n

dC с
ip с ip G h h dx C

dt р p
 







 
     

 
  

2 2

1 2

1 2

( )

, 1,

2

n n

n

n n

i G dx
d

n N
dt

dx

 


 









 

 




. 

Доказательство. Оператор 
23

3 2

21 0
4 6 3

20 1

x xxx

xx xx

uu uu u
A

u uux xu u

      
       

     
,               (20) 

удовлетворяет соотношению Лакса, т. е. 
2

2

0 6
[ , ]

6 0

x xxx

x xxx

u u u
L A LA AL i

u u u

  
    

  
. 

Поэтому уравнение (19) можно переписать в виде: 

[ , ]tL L A iR  ,                                               (21) 

где 
0

0

G
R

G

 
  

 
. 

Дифференцируя по t  равенство L   получим 
t t tL L    , которое согласно (21) 

можно переписать в виде: 

( )( )tL A iR        .                                     (22) 

Используя метод вариации постоянных из (22), находим: 

( ) ( )t A α x ψ β x     .                                     (23) 

Для определения ( )x  и ( )x  получим: 

,x xM M R                                                  (24) 

где 
1 0

0 1
M

 
  

 
. Для решения уравнения (24) удобно ввести следующие обозначения 

2 2

1 1

ˆ ˆ,
 

 
 

   
    
   

. Согласно (11), (12) и определению Вронскиана 

2

2 ( )
ˆ ˆ ˆ ˆ( ), 0T T T Tр p

M M a M M
c


        


     . 

Умножая (24) на ˆT  и ˆT  получим: 

2 2ˆ ˆ
, .

2 ( ) 2 ( )

T T

x x

c R с R

aр p aр p

   
 

 
  

 
                              (25) 

Согласно (20) при x  
3 2(4 6 )t A iр с iр     , 

поэтому на основании (23) при x  имеем: 
3 2( ) 4 6x iр с iр   , ( ) 0x  . 

Следовательно, из (25) можно определить: 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  35 
 

2

2
3 2

ˆ( ) ,
2 ( )

ˆ( ) 4 6 .
2 ( )

х

x

T

с
x R dx

aр p

с
x R dx iр с iр

aр p

  


  






 


   






 

Таким образом, равенство (23) примет вид: 
2

ˆ
2 ( )

x

T

t

с
A R dx

aр p
    




 
   

 
  

2
3 2ˆ 4 6 .

2 ( )

x

Tс
R dx iр с iр

aр p
  




 
    

 


                          

(26) 

Согласно (11), (12) равенство (26) примет вид: 

( )t ta b A a b        

3 21 1
ˆ ˆ 4 6 ( ).

x x

T TR dx R dx iр с iр a b
a a

      
 

 
      

 
   

Переходя в последнем равенстве к пределу x , с учётом (20) получим: 
2

ˆ ,
2 ( )

T

t

с
a R dx

aр p
 







 
   

2 2
3 2ˆ ˆ (8 12 ) .

2 ( ) 2 ( )

T T

t

с с b
b R dx R dx ip с ip b

aр p aр p
   

 

 

 

   
    

Поэтому, при Im 0   из равенства 

2
,t tb a a bdr

dt a

 
  

следует, что 
2

2
3 2 ˆ(8 12 )

2 ( )

Tdr b с
ip с ip R dx

dt a р p
 







 
    

 
 , 

или 
4

3 2 2 2

1 22 2 2
(8 12 ) ( ) .

4 ( )

dr c
ip с ip r G dx

dt a p p
 








    
   

Дифференцируя тождество 
n n nC   по t , получим равенство: 

n nn n

n n n
n n n

d dC d
C C

t dt dt t dt      

    


   

   
     

   
, 

которое согласно (16), можно переписать в виде: 

( ) ,n n n n
n n n n

dC d
C a h

t dt t dt

  
 

 
  

 
                               (27) 

где .

n

n

t t  

 



 


 
 

Аналогично непрерывному спектру, учитывая (18), в случае дискретного спектра получим 

следующее равенство: 
2

ˆ
2 ( )

x

Tn
n n n n

n n n n

с
A R dx h

t C р p


  




 
    

  
  

2
3 2ˆ 4 6

2 ( )

x

T

n n n n n

n n n n

с
h R dx ip c ip

C р p
 




 
   

 
 , 
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которое является аналогом равенства (26). Согласно (27) и пользуясь равенством 
n n nC  , 

последнее равенство можно переписать в виде:

 

( )n n n
n n n n n n

С d
C a h C A

t t dt

 
  

 
   

 
 

2

ˆ
2 ( )

x

T

n n n

n n n n

с
R dx h

С р p
 




 
   

 
  

2
3 2ˆ 4 6 .

2 ( )

x

T

n n n n n n n

n n n n

с
h RC dx ip c ip C

С р p
 




 
   

 
  

Переходим в этом равенстве к пределу x  с учётом (16) и (20): 

3 2( ) (4 6 )n n
n n n n n n n

dC d
a h C ip c ip

dt dt


       

2

ˆ
2 ( )

T

n n n

n n n n

с
R dx h

С р p
 







 
   

 
  

2
3 2ˆ 4 6

2 ( )

T

n n n n n n

n n n

с
h R dx ip c ip C

р p
 







 
   

 
  

Таким образом, 
2

3 2 ˆ8 12 ,
2 ( )

Tn
n n n n n

n n n

dC с
ip с ip h R dx C

dt р p








 
   

 
  

2 ˆ

2 ( ) ( )

T

n n

n

n n n n n

с R dx
d

dt C р p a

 


 







. 

Следовательно, 
2

3 2

1 1 2 28 12 ( ) ,
2 ( )

n
n n n n n n n

n n n

dC с
ip с ip G h h dx C

dt р p
 







 
     

 
  

2
2 2

1 2( )
2 ( ) ( )

n
n n

n n n n n

d с
G dx

dt C р p a


 

 





   
  . 

Осталось заметить, что согласно тождеству 
2

1 2( )
( )

n n n

n n n n

iс
a dx

C р p
  







 
  ,                                (28) 

последнее равенство можно переписать в виде: 

2 2

1 2

1 2

( )

2

n n

n

n n

i G dx
d

dt
dx

 


 









 






. 

Лемма доказана. 

Замечание. Согласно (28) и (4), если функции ( )nA t  являются ненулевыми, то дискретный 

спектр оператора ( )L t  будет простым. 

Займёмся эволюцией данных рассеяния оператора ( )L t , потенциал которого является 

решением системы (1). 

Согласно условию (5) и равенствам (11)-(13) правую часть в уравнении (1), можно переписать в 

виде: 
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2 2

1 2

1,
Im 0

2 ( )

k

N

k k

k

G Ф Ф





  . 

Легко заметить, что в силу леммы Римана-Лебега для неотрицательных t  

( , ) (1)G x t o  при x  . 

Нетрудно видеть, что при x  справедливы следующие асимптотики 

1 ( )

~ ( ) ( ) ,( )

1

ip x ip x

i p

а e b eci p

c



  


   
         
   

 

( )

( , ) ~ ,

1

iр x

i p

x ec



 

 
 
  
 

( )

~

1

k

k k
i p x

k k

i p

C ec





 
 
  
 

, 

а при x  

1

( , ) ~ ,( )
ip xx ei p

c

  


 
 

  
 

 

( ) 1

~ ( ) ( ) ,( )

1

iр x ip x

i p

а e b ec i p

c



   


   
              

1
1

~ .( )
ki p x

k k k
k

ei p
C

c

 


 
 

  
 

 

Применим результаты леммы 2 к системе уравнений (1). Сначала вычислим эволюции 
nС . При 

k  отличном от n  согласно лемме 1 имеем следующее равенство: 

2 2 2 2

1 2 2 2 1 2 1 1( ) ( )k k n n k k n nh h        

2 2 2 2

1 2 2 2 1 1 1 1 1 2 2 2( ) ( )k n n k n n k n n k n nh h h h           

 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

1
( )( ) ( )( )

2
k n k n k n k n k n k n k n k nh h h h               

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2( )( ) ( )( )k n k n k n k n k n k n k n k nh h h h             

 1 2 2 1 1 2 2 1

1 1
( )( )

2
k n k n k n k n

k n

d
h h

i dx
 

 


      


 

 1 1 2 2 1 1 2 2

1
( )( ) .k n k n k n k n

k n

d
h h

dx
 

 


     

 
 

Тогда при k n  

1 1 2 2( ) 0n n n nG h h dx 




   . 

Если k n , то 

 

2 2

1 2 2 2 1 1

1 1 2 2 1 1 2 2 1 2 1 2 2 1

( )( )

1
( )( ) ( ).

4

n n n n n n

n n n n n n n n n n n n n n

n

h h

d
h h h h

i dx

 

   


   

       
 

Из (4) и (18), имеем 

 1 1 2 2 1 2 2

2 ( )1
( ) , ( ).п п п

n n n n n n n n n

n

р р
G h h dx W h dx А t

C с


  

 

 


        

Таким образом, согласно лемме 2 
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3 2(8 12 2 ( )) , 1, 2, ..., .n
n n n n

dC
ip с ip А t C n N

dt
     

Подобным образом можно показать, что 

2 2

1 2( ) 0,G dx 




  
2 2

1 2( ) 0,n nG dx 




    

поэтому 

3 2(8 12 ) ,
dr

ip с ip r
dt


   

0, 1, 2, ..., .nd
n N

dt


   

Таким образом, доказана следующая теорема 

Теорема. Если функции ( , ),u x t 1( , ),kФ x t
2( , ), 1, 2, ..., ,kФ x t k N  являются решением задачи 

(1)–(5) в классе функций (6), то данные рассеяния оператора ( )L t  с потенциалом ( , )u x t  меняются по 

t  следующим образом: 

3 2(8 12 ) ,
dr

ip с ip r
dt


  (Im 0)  , 

3 2(8 12 2 ( )) , 1, 2, ..., .n
n n n n

dC
ip с ip А t C n N

dt
     

0, 1, 2, ...,nd
n N

dt


  . 

Полученные равенства полностью определяют эволюцию данных рассеяния, что позволяет 

применить метод обратной задачи рассеяния для решения задачи Коши (1)–(5) в классе функций (6). 

Заключение. Выводятся эволюции данных рассеяния несамосопряженного оператора Дирака с 

простыми собственными значениями, потенциал которого является решением уравнения мКдФ с 

самосогласованным источником, в случае конечной плотности. 

Полученные результаты могут быть использованы в спектральной теории линейных 

операторов, в математической физике при интегрировании нелинейных уравнений и при решении 

некоторых задач физики плазмы. 
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АВТОМОДЕЛЬНЫЕ РЕШЕНИЯ ВЫРОЖДАЮЩЕГОСЯ ДИФФЕРЕНЦИАЛЬНОГО 

УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ТРЕТЬЕГО ПОРЯДКА С ЧЕТЫРЬМЯ 

ПЕРЕМЕННЫМИ 
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Аннотация. При изучении краевых задач для некоторых дифференциальных уравнений в 

частных производных, возникающих в прикладной математике, часто приходится составить 

систему уравнений в частных производных, удовлетворяемую гипергеометрическими функциями, и 

находить явные линейно независимые решения для этой системы. В настоящей работе мы строим 

автомодельные решения одного вырождающегося дифференциального уравнения в частных 

производных третьего порядка, которые выражаются через гипергеометрическую функцию от 

трёх переменных высшего порядка. 

Ключевые слова: вырождающееся уравнение в частных производных, автомодельное решение, 

гипергеометрическая функция от трёх переменных высшего порядка, система 

гипергеометрического типа. 

 

SELF-SIMILAR SOLUTIONS OF A THIRD-ORDER DEGENERATE PARTIAL 

DIFFERENTIAL DIFFERENTIAL EQUATION WITH FOUR VARIABLES 

 

Abstract. When studying boundary value problems for some partial differential equations arising in 

applied mathematics, we often have to study of a system of PDE satisfied by hypergeometric functions and 

find an explicit linearly independent solutions for this system. In the present work, we construct a self-similar 

solutions of some degenerate PDE of the third order which are expressed in terms of the triple 

hypergeometric functions of the fourth order.  

Keywords: degenerating partial differential equation, self-similar solution, hypergeometric function in 

three variables, system of the hypergeometric type.  

 

ТЎРТ ЎЗГАРУВЧИЛИ УЧИНЧИ ТАРТИБЛИ БУЗИЛАДИГАН ХУСУСИЙ ҲОСИЛАЛИ 

ДИФФЕРЕНЦИАЛ ТЕНГЛАМАНИНГ АВТОМОДЕЛ ЕЧИМЛАРИ ҲАҚИДА 

 

Аннотация. Амалий математикада пайдо бўладиган баъзи хусусий ҳосилали дифференциал 

тенгламалар учун чегаравий масалаларни тадқиқ этишда, кўпинча, гипергеометрик функциялар 

томонидан қаноатлантириладиган тенгламалар системасини тузишга ва бу системанинг чизиқли 

эркли ечимларини топишга тўғри келади. Мазкур ишда  бузиладиган учинчи тартибли хусусий 

ҳосилали дифференциал тенгламанинг уч ўзгарувчили юқори тартибли гипергеометрик функция 

орқали ифодаланадиган автомодел ечимларини топамиз.  

Калит сўзлар: бузиладиган хусусий ҳосилали дифференциал тенглама, автомодел ечим, уч 

ўзгарувчили юқори тартибли гипергеометрик функцияси, гипергеометрик типдаги система. 

 

Введение. Теория специальных функций, как область математического анализа, посвящённая 

исследованию и применению высших трансцендентных функций, имеет давнюю историю и богатое 

содержание, обусловленное проникновением и взаимосвязями с самыми разнообразными вопросами 

теории функций, интегральных и дифференциальных уравнений и других разделов математики. 

Решение самых разных задач, относящихся к теплопроводности и динамике, электромагнитным 

колебаниям и аэромеханике, квантовой механике и теории потенциала, приводит к специальным 

mailto:zafarbekarzikulov1984@gmail.com
mailto:abduzhabborov.abdukhalim@gmail.com
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функциям. Чаще всего они появляются при решении дифференциальных уравнений в частных 

производных. 

Большие успехи, достигнутые в теории гипергеометрической функции одного переменного, 

стимулировали развитие соответствующих теорий для функций от двух или многих переменных.   

Большая заслуга в теории гипергеометрических функций двух переменных принадлежит к 

Горну [1], который исследовал, в частности, гипергеометрические функции второго порядка. Он 

установил, что, кроме некоторых функций, выражаемых через функции от одного переменного или 

через произведения двух гипергеометрических функций, каждая из которых зависит от одного 

переменного, существует 34 существенно различных гипергеометрических функций порядка 2 

(список Горна).  Таким образом, в случае двух переменных 14 полных и 20 конфлюэнтных 

гипергеометрических функций второго порядка. Горн изучил сходимость гипергеометрических 

функций от двух переменных [2, с. 221 – 224]  и установил системы дифференциальных уравнений в 

частных производных, которым они удовлетворяют [2, с. 227 – 230]. Горн ограничивался 

исследованием гипергеометрических функций двух переменных второго порядка.  

Гипергеометрические функции, порядок которых превышает 2, называются функциями  Кампе-де-

Ферье [3, с. 27].  

Как известно, если порядок вырождающегося и сингулярного дифференциальных уравнений в 

частных производных с тремя переменными превышает два, то их любые решения выражаются через 

гипергеометрическую функции Кампе-де-Ферье, порядок которой равен порядку рассматриваемого 

уравнения. Например, в работе [4] все 8 автомодельные решения уравнения  

0, , , 0n m k m k n

t xxx yyyLu x y u t y u t x u m n k const       

в области    , , : 0, 0, 0x y t x y t      выписаны через   гипергеометрическую функцию 

Кампе-де-Ферье.  К такому направлению исследований примыкают работы [5,6,7].  

Следуя Горну [1] определим гипергеометрическую функцию от трёх переменных: тройной 

степенной ряд  

, , 0

( , , ) m n p

m n p

A m n p x y z




                                                            (1) 

является гипергеометрическим рядом, если два отношения:  

( 1, , )
( , , ),

( , , )

A m n p
f m n p

A m n p


    

( , 1 , )
( , , ) ,

( , , )

A m n p
g m n p

A m n p


    

( , , 1)
( , , ),

( , , )

A m n p
h m n p

A m n p


  

– рациональные функции от ,m  n  и p .    

Систему, которую удовлетворяет гипергеометрическая функция от трёх переменных, можно 

записать с помощью дифференциальных операторов:  

,x
x







  y
y







  и z
z







                                                         (2) 

в виде  

   

   

   

1

1

1

' , , , , 0,

' , , , , 0,

' , , , , 0,

F x F u

G y G u

H z H u

     

     

     







    

    


   

                                               (3) 

( , , )u u x y z  искомая гипергеометрическая функция и  
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( 1, , ) ( , , )
,

( , , ) '( , , )

A m n p F m n p

A m n p F m n p


   

( , 1, ) ( , , )
,

( , , ) '( , , )

A m n p G m n p

A m n p G m n p


  

( , , 1) ( , , )
.

( , , ) '( , , )

A m n p H m n p

A m n p H m n p


  

Таким образом, система, которую удовлетворяет гипергеометрическая функция от трёх 

переменных (1) имеет вид (3). 

В настоящее время известны 205 полные [3, c. 74 – 87] и 395 конфлюэнтные [8] 

гипергеометрические функции от трёх переменных второго порядка. Интегральные представления 

типа Эйлера для 205 полных гипергеометрических функций от трёх переменных установлены в [9], а 

системы, которым удовлетворяют эти же полные  функции, составлены в  [10]. 

Целью настоящей работы найти все автомодельные решения  одного вырождающегося 

дифференциального уравнения в частных производных третьего порядка с четырьмя переменными. 

Для решения поставленной задачи требуется вводить в рассмотрение обобщённые 

гипергеометрические функции от трёх переменных более второго порядка.  

Обобщённая гипергеометрическая функция трёх переменных. Обобщённая 

гипергеометрическая функция трёх переменных порядка ( , , )M N P  определяется равенством 

[11](см. также, [3, с.44]): 

 
             

             
(3) (3)

:: ; ; : ; ; ;
, , , ,

:: ; ; : ; ; ;

a b b b c c c
F x y z F x y z

e g g g h h h

    
  

    
 

 
, , 0

, , ,
! ! !

m n p

m n p

x y z
m n p

m n p





   

 

где  

             

             

1 1 1 1 1 1 1

1 1 1 1 1 1 1

( , , ) .

A B B B C C C

j j j j j j jm n p m n n p p m m n p
j j j j j j j

E G G G H H H

j j j j j j jm n p m n n p p m m n p
j j j j j j j

a b b b c c c

m n p

e g g g h h h

   

    
      

   

    
      

   

 

   

      

      

 

Здесь  


  –  символ Похгаммера:  

 
0

1,   
 

( )
( 1) ... ( 1) ,



 
    



 
      


 

а  z – известная гамма-функция. 

Порядок ( , , )M N P  обобщённой гипергеометрической функции  (3) , ,F x y z  определяется 

следующим образом: 

 

 max , 1 ,M A B B C E G G H          

 max , 1 ,N A B B C E G G H            

 max , 1 .P A B B C E G G H              

Гипергеометрические функции от трёх переменных принято делить на два вида.  Если 

,M N P K    то функция  (3) , ,F x y z   называется полной обобщённой гипергеометрической 

функцией порядка   K , в противном случае, конфлюэнтной (вырожденной). 

Рассмотрим конфлюэнтную гипергеометрическую функцию  (3) , ,F x y z  третьего порядка 
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 
 

           
3

, , 01 2 1 2 1 2 1 2 1 2 1 2

:: ; ; : ; ; ;
, , .

:: ; ; : , ; , ; , ; ! ! !

m n p
m n p

m n p m m n n p p

aa x y z
F x y z

c c d d e e c c d d e e m n p


 



      
 

    


 

Для удобства введём обозначение: 

   3 3

1 2 1 2 1 2 1 2 1 2 1 2

:: ; ; : ; ; ; ;
, , , , .

:: ; ; : , ; , ; , ; , ; , ; , ;

a a
F x y z F x y z

c c d d e e c c d d e e

        
   

      
 

Таким образом,  

   

           
3

, , 01 2 1 2 1 2 1 2 1 2 1 2

;
, , .

, ; , ; , ; ! ! !

m n p
m n p

m n p m m n n p p

aa x y z
F x y z

c c d d e e c c d d e e m n p


 



 
 

 
       

(4) 

,a ,ic  id  и ie  - действительные числа, причём ic , , 0, 1, 2,...i id e    ( 1,2i  ). 

Составим систему дифференциальных уравнений гипергеометрического типа, 

соответствующую к функции 
 3

1 2 1 2 1 2

;
, ,

, ; , ; , ;

a
F x y z

c c d d e e

 
 
 

. 

Введём обозначение:  

 

           1 2 1 2 1 2

( , , )
! ! !

m n p

m m n n p p

a
A m n p

m n p c c d d e e

 
  

и составим отношения:  

  1 2

( 1, , )
,

( , , ) ( 1)

A m n p a m n p

A m n p m c m c m

   


  
 

  1 2

( , 1, )
,

( , , ) ( 1)

A m n p a m n p

A m n p n d n d n

   


  
 

  1 2

( , , 1)
.

( , , ) ( 1)

A m n p a m n p

A m n p p e p e p

   


  
 

Отсюда,  

  1 2( , , ) , ( , , ) ( 1) ,F m n p a m n p F m n p m c m c m         

  1 2( , , ) , ( , , ) ( 1) ,G m n p a m n p G m n p n d n d n         

  1 2( , , ) , ( , , ) ( 1) .H m n p a m n p H m n p p e p e p         

Теперь подставив ( , , ),F m n p  ( , , )G m n p  и ( , , )H m n p  в систему (3) и воспользовавшись 

определением (2) дифференциальных операторов ,   и   , получим:  

1

1 2

1

1 2

1

1 2

1 0,

1 0,

1

c x c x x x a x y z u
x x x x y z

d y d y y y a x y z u
y y y x y z

e y e y y y a x y
y y y x







          
             

           

           
             

           

       
        

       
0.z u

y z









         

           (5) 

Раскрывая скобки в системе (5), получим:  
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   

   

   

2

2 1 1 2

2

2 1 1 2

2

2 1 1 2

1 0,

1 0,

1 0.

xxx xx x y z

yyy yy y x z

zzz zz z x y

x c c x c c x y z a

y d d x d d y x z a

z e e z e e z x y a

     

     

     

         


        
         

                         (6) 

Таким образом, гипергеометрическая функция, определённая равенством (4), действительно 

удовлетворяет системе дифференциальных уравнений (6).  

Теперь определим все линейно независимые решения системы (6) в окрестности начала 

координат.  

Решения системы (6) будем искать в виде:  

( , , ),u x y z x y z                                                                                   (7) 

где  ,  и  - произвольные числа, подлежащие к определению, ( , , )x y z  - произвольная 

функция.  

Вычислив необходимые производные от функции и подставив их систему (5), получим:  

   

  

2

2 1 2 1 1 2

1

1 2

3 1 3 ( 1) 2 1

1 1 ( ) 0,

xxx xx xx c c x c c c c x

c c x a

      

      

             

           

 

   

  

2

2 1 2 1 1 2

1

1 2

3 1 3 ( 1) 2 1

1 1 ( ) 0,

yyy yy yy d d y d d d d y

d d y a

      

      

             

           

 

   

  

2

2 1 2 1 1 2

1

1 2

3 1 3 ( 1) 2 1

1 1 ( ) 0,

zzz zz zz e e z v e e e e z

e e z a

     

      

             

           

 

Отсюда получим определяющую систему (indicate system):  

  

  

  

1 2

1 2

1 2

1 1 0

1 1 0

1 1 0

c c

d d

e e

  

  

  

    


    
     

                                                                  (8) 

имеющую 27 решений: 

 1 2 3 4 5 6 7 8 9 

  0 0 0 
11 с  11 с  11 с  21 с  21 с

 

21 с  

  0 
11 d  21 d  0 

11 d  21 d  0 
11 d

 

21 d  

  0 0 0 0 0 0 0 0 0 

 

 10 11 12 13 14 15 16 17 18 

  
11 e  11 e  11 e  11 с  11 с  11 с  21 с  21 с

 

21 с  

  0 
11 d  21 d  31 d  11 d  21 d  0 

11 d

 

21 d

 

  0 0 0 
11 e  11 e  11 e  11 e  11 e  11 e  

 

 19 20 21 22 23 24 25 26 27 

  0 0 0 
11 с  11 с  11 с  21 с  21 с

 

21 с  

  0 
11 d  21 d  0 

11 d  21 d  0 
11 d 21 d
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  
21 e

 

21 e  21 e  21 e  21 e  21 e  21 e  21 e

 

21 e  

 

Следовательно, с учётом таблицы решений, определяющей системы (8) и представление (7), 

система дифференциальных уравнений гипергеометрического типа (6) имеет 27 линейно 

независимые решения: 

   3

1

1 2 1 2 1 2

;
, , , , ,

, ; , ; , ;

a
x y z F x y z

c c d d e e


 
  

 
                                                         (8) 

  1 11 (3)

2

1 2 1 2 1 1 2

1 ;
, , , , ,

, ; 2 , 1 ; , ;

d
d a

x y z y F x y z
c c d d d e e

 
  

  
   

                                     (9) 

  2 21 (3)

3

1 2 2 1 2 1 2

1 ;
, , , , ,

, ; 2 , 1 ; , ;

d
d a

x y z y F x y z
c c d d d e e

 
  

  
   

                    (10) 

  1 11 (3)

4

1 2 1 1 2 1 2

1 ;
, , , , ,

2 , 1; , ; , ;

c
c a

x y z x F x y z
c c c d d e e

 
  

  
   

                                 (11) 

  1 1 1 11 1 (3)

5

1 2 1 1 2 1 1 2

2 ;
, , , , ,

2 , 1; 2 , 1; , ;

c d
a c d

x y z x y F x y z
c c c d d d e e

  
   

  
      

                  (12) 

   1 2
3 1 21 1

6

1 2 1 1 2 2 1 2

2 ;
, , , , ,

2 , 1; 1, 2 ; , ;

c d
a c d

x y z x y F x y z
c c c d d d e e

  
   

  
      

                       (13) 

   2
3 21

7

2 1 2 1 2 1 2

1 ;
, , , , ,

2 , 1; , ; , ;

c
c a

x y z x F x y z
c c c d d e e

 
  

  
   

                                       (14) 

  2 1 2 11 1 (3)

8

2 1 2 2 1 1 1 2

2 ;
, , , , ,

2 , 1; 1,2 ; , ;

c d
a c d

x y z x y F x y z
c c c d d d e e

  
   

  
      

                (15) 

  2 2 2 21 1 (3)

9

2 1 2 1 2 2 1 2

2 ;
, , , , ,

2 , 1; 1, 2 ; , ;

c d
a c d

x y z x y F x y z
c c c d d d e e

  
   

  
      

                               (16) 

   1
3 11

10

1 2 1 2 2 1 2

1 ;
, , , , ,

, ; , ; 2 , 1;

e
e a

x y z z F x y z
c c d d e e e

 
  

  
   

                                                             (17) 

   1 1
3 1 11 1

11

1 2 1 2 1 1 2 1

2 ;
, , , , ,

, ; 2 , 1; 2 , 1;

d e
a d e

x y z y z F x y z
c c d d d e e e

  
   

  
      

             (18) 

   2 1
3 2 11 1

12

1 2 2 1 2 2 1 1

2 ;
, , , , ,

, ; 2 , 1; 1; 2 ;

d e
a d e

x y z y z F x y z
c c d d d e e e

  
   

  
      

                       (19) 

   1 1
3 1 11 1

13

1 2 1 1 2 1 2 1

2 ;
, , , , ,

2 , 1; , ; 2 , 1;

c e
a c e

x y z x z F x y z
c c c d d e e e

  
   

  
      

                                (20) 

   1 1 1
3 1 1 11 1 1

14

2 2 1 2 2 1 1 2 1

3 ;
, , , ,

2 , 1; 2 , 1; 2 , 1;

c d e
a c d e

x y x y z F x y z
c c c d d d e e e

   
    

  
         

                      (21) 

   1 2 1
3 1 2 11 1 1

15

2 2 1 2 1 2 1 2 1

3 ;
, , , , ,

2 , 1; 2 , 1; 2 , 1;

c d e
a c d e

x y z x y z F x y z
c c c d d d e e e

   
    

  
         

                       (22) 

   2 1
3 2 11 1

16

2 1 2 1 2 1 2 1

3 ;
, , , , ,

2 , 1; , ; 2 , 1;

c e
a c e

x y z x z F x y z
c c c d d e e e

  
   

  
      

                           (23) 
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   2 1 1
3 2 1 11 1 1

17

2 2 1 1 2 1 1 2 1

3 ;
, , , , ,

2 , 1; 2 , 1; 2 , 1;

c d e
a c d e

x y z x y z F x y z
c c c d d d e e e

   
    

  
         

                           (24) 

   2 2 1
3 2 2 11 1 1

18

2 1 2 2 1 2 1 2 1

3 ;
, , , , ,

2 , 1;2 , 1; 2 , 1;

c d e
a c d e

x y z x y z F x y z
c c c d d d e e e

   
    

  
         

                       (25) 

   2
3 21

19

1 2 1 2 2 1 2

1 ;
, , , , ,

, ; , ; 2 , 1;

e
e a

x y z z F x y z
c c d d e e e

 
  

  
   

                                              (26) 

   1 2
3 1 21 1

20

1 2 1 2 1 2 1 2

3 ;
, , , , ,

, ; 2 , 1; 2 , 1;

d e
a d e

x y z y z F x y z
c c d d d e e e

  
   

  
      

                    (27) 

   2 2
3 2 21 1

21

1 2 2 1 2 2 1 2

3 ;
, , , , ,

, ; 2 , 1; 2 , 1;

d e
a d e

x y z y z F x y z
c c d d d e e e

  
   

  
      

                            (28) 

   1 2
3 1 21 1

22

1 2 1 1 2 1 2 2

3 ;
, , , , ,

2 , 1; , ; 1,2 ;

c e
a c e

x y z x z F x y z
c c c d d e e e

  
   

  
      

                             (29) 

   1 1 2
3 1 1 21 1 1

23

1 2 1 1 1 2 1 2 1 2

3 ;
, , , , ,

2 , 1; 2 , 2 , 1;2 , 1;

c d e
a c d e

x y z x y z F x y z
c c c c d d d e e e

   
    

  
          

                 (30) 

   1 2 2
3 1 2 21 1 1

24

1 2 1 2 1 2 2 1 2

3 ;
, , , , ,

2 , 1; 2 , 1; 2 , 1;

c d e
a c d e

x y z x y z F x y z
c c c d d d e e e

   
    

  
         

                     (31) 

   2 2
3 2 21 1

25

2 1 2 1 2 2 1 2

3 ;
, , , , ,

2 , 1; , ; 2 , 1;

c e
a c e

x y z x z F x y z
c c c d d e e e

  
   

  
      

                             (32) 

   2 1 2
3 2 1 21 1 1

26

2 1 2 1 2 1 2 1 2

3 ;
, , , , ,

2 , 1; 2 , 1; 2 , 1;

c d e
a c d e

x y z x y z F x y z
c c c d d d e e e

   
    

  
         

               (33) 

   2 2 2
3 2 2 21 1 1

27

1 2 1 1 2 1 1 2 1

3 ;
, , , , .

2 , 1; 2 , 1; 2 , 1;

c d e
a c d e

x y z x y z F x y z
c c c d d d e e e

   
    

  
         

                         (34) 

1. Автомодельные решения вырождающегося дифференциального уравнения в 

частных производных четвёртого порядка 

Рассмотрим уравнение  

0, , , , 0n m p k m p k n p k n m

t xxx yyy zzzLu x y z u t y z u t x z u t x y u m n k p const         (35) 

в области    , , , : 0, 0, 0, 0x y z t x y z t      .   

Решение уравнения (35) будем искать в виде: 

       ( , , ),u P                                                                          (36) 

где  
1

1 3 3 3

3 1 3 1 3 1

3 1 1 1
, , , ,

1 3( 3) 3( 3) 3( 3)

k n m p

k k k

k k k
P t x y z

k n t m t p t
  



   

  

   
       

    
(37

) 

, ,
3 3 3

n m p

n m p
    

  
.                                                              (38) 

Подставляя (36) в уравнение (35), получим дифференциальное уравнение в частных 

производных третьего порядка: 

1 2 3 4 5 6 7 8 9 10 0A A A A A A A A A A                                          (39) 

где   

2

1 1

1
,

3

k n m p

k

k
A Pt x y z

t




 
  

 
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2

2 1

1
,

3

k n m p

k

k
A Pt x y z

t




 
  

 
 

2

3 1

1
,

3

k n m p

k

k
A Pt x y z

t




 
  

 
 

4 1

1 1 2 2
1 ,

2 3 3

k m

k

k
A Pt y

t

 




   
   

 
 

5 1

1 1 2 2
1 ,

2 3 3

k n m

k

k
A Pt x y

t

 




   
   

 
 

6 1

1 1 2 2
1 ,

2 3 3

k n m

k

k
A Pt x y

t

 




   
   

 
 

7 1

1 1 2 2
3 ,

2 3 3

k n m

k

k
A Pt x y

t

 




   
  

 
 

8 1

1 1 2 2
3 ,

2 3 3

k n m

k

k
A Pt x y

t

 




   
  

 
 

9 1

1 1 2 2
3 ,

2 3 3

k n m

k

k
A Pt x y

t

 




   
  

 
 

10 1

1
3 .

2

k n m

k

k
A Pt x y

t 


   

Принимая во внимание определение (37) параметров  ,   и ,   а также подставляя 

выражения коэффициентов 1 10A A  в  уравнение (39),  легко убедиться в том, что уравнение (39) 

равносильно следующей системе дифференциальных уравнений: 

2

2

2

1 2 2 1 2 2
1 0

3 3 3 3

1 2 2 1 2 2
1 0

3 3 3 3

1 2 2 1 2 2
1 0

3 3 3 3

    

    

    

   
       

   
       

   
       

       
           
   

       
            
   

       
            
   

 

Сравнивая теперь последнюю систему дифференциальных уравнений с системой (39), 

учитывая (36), легко выписать все 27  автомодельных решений вырождающегося дифференциального 

уравнения в частных производных  (35)  в виде: 

   3

1 1

1;

, , , , , ,2 1 2 2 1 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t PF        

 
       
 
 

    (40) 

 
1

(3)3
2 2

4
;

3
, , , , , ,

2 1 2 4 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F




    
     



 
 

  
      

  

 (41) 

 
2 2

(3)3
3 3

5 2
;

3
, , , , , ,

2 1 2 5 2 4 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F




    
     



 
 

  
      

  

  (42) 
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 
1

(3)3
4 4

4
;

3
, , , , , ,

4 4 2 1 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F




    
     



 
 

  
      

  

       (43) 

 
1 1

(3)3 3
5 5

5
;

3
, , , , , ,

4 2 4 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

 

(44) 

   
1 2 2

33 3
6 6

6 2
;

3
, , , , , ,

4 2 4 5 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

(45) 

   
2 2

33
7 7

5 2
;

3
, , , , , ,

5 2 4 2 1 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F




    
     



 
 

  
      

  

   (46) 

 
2 2 1

(3)3 3
8 8

6 2
;

3
, , , , , ,

5 2 4 4 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

   (47) 

 
2 2 2 2

(3)3 3
9 9

7 2 2
;

3
, , , , , ,

5 2 4 4 5 2 2 1 2
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

    (48) 

   
1

33
10 10

4
;

3
, , , , , ,

2 1 2 2 1 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F




    
     



 
 

  
      

  

   (49) 

   
1 1

33 3
11 11

2
;

3
, , , , , ,

2 1 2 4 2 2 2 4
, ; , ; , , ;

3 3 3 3 3 3 3

u x y z t P F
 

 

     
      

 

  
 

  
       

  

(50) 

   
2 2 1

33 3
12 12

6 2
;

3
, , , , , ,

2 1 2 4 5 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

  (51) 

   
1 1

33 3
13 13

5
;

3
, , , , , ,

4 2 2 1 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t F
 

 

     
     

 

  
 

  
      

  

  (52) 
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   
1 1 1

33 3 3
14 14

6
;

3
, , , , , ,

4 2 4 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

   (53) 

   
1 2 2 1

33 3 3
15 15

5 2
;

3
, , , , , ,

4 2 4 5 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

       (54) 

   
2 2 1

33 3
16 16

9 2
;

3
, , , , , ,

5 2 4 2 1 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

   (55) 

 

   
2 2 1 1

33 3 3
17 17

7 2
;

3
, , , , , ,

5 2 4 4 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

    (56) 

 

   
2 2 2 2 1

33 3 3
18 18

8 2 2
;

3
, , , , , ,

5 2 4 4 5 2 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

   (57) 

 

   
2 2

33
19 19

5 2
;

3
, , , , , ,

2 1 2 2 1 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F




    
     



 
 

  
      

  

 (58) 

   
1 2 2

33 3
20 20

9 2
;

3
, , , , , ,

2 1 2 4 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

   (59) 

   
2 2 2 2

33 3
21 21

10 2 2
;

3
, , , , , ,

2 1 2 4 5 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

 (60) 

   
1 2 2

33 3
22 22

9 2
;

3
, , , , , ,

4 2 2 1 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

 (61) 
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   
1 1 2 2

33 3 3
23 23

7 2
;

3
, , , , , ,

4 2 4 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

 (62) 

   
1 2 2 2 2

33 3 3
24 24

8 2 2
;

3
, , , , , ,

4 2 4 5 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

   (63) 

   
2 2 2 2

33 3
25 25

10 2 2
;

3
, , , , , ,

5 2 4 2 1 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
 

 

     
     

 

  
 

  
      

  

 (64) 

   
2 2 1 2 2

33 3 3
26 26

8 2 2
;

3
, , , , , ,

5 2 4 4 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

 (65) 

   
2 2 2 2 2 2

33 3 3
27 27

9 2 2 2
;

3
, , , , , ,

5 2 4 4 5 2 5 2 4
, ; , ; , ;

3 3 3 3 3 3

u x y z t P F
  

  

      
     

  

   
 

  
      

  

     (66) 

where 1 27, ,  are constants. 

1

1 3 3 3

3 1 3 1 3 1

3 1 1 1
, , , ,

1 3( 3) 3( 3) 3( 3)

k n m p

k k k

k k k
P t x y z

k n t m t p t
  



   

  

   
       

    
 

Таким образом, доказана следующая  

Теорема.  Все автомодельные решения вырождающегося дифференциального уравнения (35) 

представляются равенствами (40) – (66).   

Заключение. Как известно, Сривастава впервые определил общие гипергеометрические 

функции от трёх переменных произвольного порядка. Несмотря на то, что имеется множество работ, 

в которых исследованы вопросы сходимости и приводимости, получены формулы суммирования и 

преобразования, интегральные представления для гипергеометрических функций от трёх 

переменных, очень мало работ, посвящённых применению гипергеометрических функций от трёх 

переменных высшего порядка к прикладным задачам. 

Настоящая работа интересна тем, что она обсуждает приложения гипергеометрических 

функций от трёх переменных третьего порядка – устанавливает автомодельные решения одного 

вырождающегося дифференциального уравнения, возникающего в прикладных задачах 

математической физики. 
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Аннотация. В работе исследуются автоморфизмы лемнискатных областей, задаваемых 

уровнями модуля многочлена ( )P z . Доказано, что каждая связная компонента области 

( ) 1P z  является односвязной, и отображение 0:P D  является правильным голоморфным 

накрытием. Установлено, что всякий автоморфизм лемнискаты, сохраняющий уровни 

( )Р z const и переставляющий нули многочлена с сохранением кратностей, удовлетворяет 

соотношению ( ( )) ( )izP f z e P z . Показано, что группа таких автоморфизмов конечна и совпадает 

с группой алгебраических симметрий многочлена ( )P z  

Ключевые слова: лемниската, автоморфизм, многочлен, уровень модуля, симметрия, 

правильное отображение, принцип аргумента. 

 

AUTOMORPHISMS AND LEMNISCATES 

 

Abstract. The paper investigates the automorphisms of lemniscate domains defined by the level sets of 

the modulus of a polynomial ( )P z ). It is proved that each connected component of the domain ( ) 1P z  is 

simply connected and that the mapping 0:P D  is a proper holomorphic covering. Furthermore, any 

automorphism preserving the levels |P(z)|= ( )Р z const and permuting the zeros of P with their 

multiplicities satisfies ( ( )) ( )izP f z e P z . The group of such automorphisms is finite and coincides with the 

algebraic symmetry group of the polynomial ( )P z  

Key words: lemniscate, automorphism, polynomial, module level, symmetry, proper mapping, 

argument principle. 

 

AVTOMORFIZMALAR VA LEMNISKATLAR 

 

Annotatsiya. Maqolada ( )P z ko’phadining moduli darajalaridan hosil bo’lgan lemniskata 

sohalarining avtomorfizmlari o’rganiladi. Har bir ( ) 1P z  sohasi bilan bog’langanligi  va 

0:P D  xaritasi to’g’ri golomorflik bilan qoplovchi ekanligi isbotlangan. Shuningdek, 

( )Р z const darajalarini saqlovchi hamda Р ko’phadining nollarini ularning ko’payish sonlari bilan 

almashtiruvchi har qanday avtomorfizm ( ( )) ( )izP f z e P z shartni bajarishi ko’rsatildi. Bunday 

avtomorfizmlar guruhi chekli bo’lib ( )P z ko’phadining algebraik simmetriyalar guruhi bilan mos keladi. 

Kalit so’zlar: lemniskata, avtomorfizm, ko’phad, modul darajalari, simmetriya, to’g’ri akslantirish, 

akslantirish pirinsipi. 
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Введение. Современная геометрическая  теория функций  исследует взаимосвязь между 

аналическими свойствами комплексных отображений  и формой  их областей определения. Одним из 

фундаментальных  объектов этой теориий являются лемнискатные области – множества, задаваемые 

уравнениями модуля многочлена или более общего голоморфного отображения: 

 : ( ) 1z Р z         (1.1) 

Где ( )P z -многочлен степени 1n  . Границы таких областей, определяемые уравнением 

( ) 1Р z  , называют лемнискатами. Они являются естественным обобщением окружности, когда 

( )P z z . 

Исследование автоморфизмов лемнискатных областей занимает важное место в комплексном 

анализе. В классическом случае, когда областью служит единичныый диск, автоморфизмы 

полностью описываются дробно –линейными пребразованиями  Мёбиуса. 

( )
1

i z a
f z e

az

 



,   1a       (1.2) 

образующими группу  Aut D , сохраняющую уровни z const  и реализующую конформные 

вращения в гиперболической метрике. 

Однако если область имеет лемнискатную форму, то структура автоморфизмов сушественно 

усложняется. В общем случае такие области не являются кругами, а их границы могут иметь 

несколько компонент, различающихся по топологии и кривизне. Поэтому описание всех 

автоморфизмов, сохраняющих внутренною лемнискаты предстает собой самостаятельную и 

нетривиальную задачу. 

Особых интерес вызывают отображения :f   которые: 

*Сохраняют уровни функции ( )P z сonst ; 

*Переставляют нули многочлена ( )P z с сохранением их кратностей; 

*Поддерживают инвариантность границы  ( ) 1Р z   . 

Такие отображения естественно рассматривать как автоморфизмы лемнискатной области, 

согласованные с многочленом  Р . 

Цель настоящей работы - сторогое описание и доказательство аналитико-геометрических 

свойств автоморфизмов лемнискат, порождённых многочленом ( )P z . 

В частности, в работе: 

1. Доказывается что каждая связная компонента области ( ) 1P z   односвязна и что 

отображение 0:P D  является правильным голоморфным накрытием диска конечной степни 

(Лемма 1). 

2. Устанавливается, что  всякий  автоморфизм сохраняющий уровни ( )P z и переставляющий 

нули Р  , удовлетворяет соотношению ( ( )) ( )iP f z e P z  (теорема 1) 

3. Показано что такие автоморфизмы сохраняют кратности нулей и инвариантность границы 

(теорема 2) 

4. Доказано, что группа всех автоморфизмой,  согласованых с Р  , конечна (теорема 3). 

Методы исследованиия основаны на сочетании класических приёмов геометрической теорих 

функций принципа аргумента и локальных разложений Вейерштрасса, что обеспечивает строгость и 

полноту доказательств. 

Таким образом, статья формирует законченное описание группы автоморфизмов лемнискатных 

областей, определяемых многочленом  ( )P z , и выявляет дискретную структуру их симметрий. 

Лемма 1. (Об односвязности и правильности компоненты лемнискаты) 

Пусть ( )P z -ненулевой многочлен степени 1n  и пусть  
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 : ( ) 1z Р z         (1.3) 

-лемнискатная область, заданная уравнем модуля многочлена. Обозначим через 

0 фиксированную связную компоненту множества  . 

Тогда выполняются следующие свойства: 

1. Область 0  односвязна: 

2.  Ограничение  0 0: : 1P n D w w     является правильным (proper) голоморфным 

отображением канечной степени т : 

3. Число т  равно сумме кратностей всех нулей многочлена Р , принадлежащих 0 : 

0

0z

n

m ord P


          (1.4) 

Пояснение происхождения леммы. Этот результат восходит классическим фактом 

геометрической теории функций и теории квазиконформных отображений (смотрите: Lehto & 

Virtanen, “Quasiconformal Mappings in the Plane” (1973, §14) и Ahlfors, “Lectures on Quasiconformal 

Mappings” (1966, Ch.1). 

Для удобства дальнейшего использования ниже приводится полное доказательство в 

развернутом виде. 

Доказательство 

Шаг 0. Регулярные уровни. Выберем  0,1r  так что окружность w r  не содержит 

критических значений многочлена Р  

      : 0CritVal P Р z P z   

Обозначим  

    0: ,r z P z r r    -компоненту, вложенную в 0 . 

Шаг 1. Накрытие без ветвлений 

Если окружность w r  регулярна (не пересекает множеств критических значений). То  

   0:P r w r    

Является голоморфным накрытием без ветвлений. 

Так как диск  w r  односвязен, любое его связное накрытие тривиально  0 r  также 

односвязна ([Lehto & Virtanen, §14]). 

Шаг 2. Предел при 1r   

Область 0  представима как 

 0 0

0 1r

r
 

   , 

И каждая  0 r  односвязна. 

Объединение возрастающих односвязных областей также односвязно. 

Следовательно, 0 односвязна. 

Шаг 3. Правильность отображения 

Пуск K D - произвольный компакт. 

Существует 1   такое, что  K w   . 

Тогда  

    1

0 0 :P K z P z       
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Замкнуто и ограничено внутри 0 . 

Следовательно, компактно. 

Это означает, что 
0

Р   является proper map- образ компакта при обратном отображении 

компактен (см)[Ahlfors, Ch.1]. 

Шаг 4. Степень и число нулей 

По принципу аргумента степень покрытия т  равна числу нулей  P z w  в области 0 (с 

учётом кратностей): 

 

 0

1
, 1,

2 Г

P z
m dz w

i P z w


 

        (1.5) 

Где 0 0Г   -замкнутая кривая, охватывающая все нули  P z w  в 0 . 

При 0w   формула (1,5) даёт именно сумму кратностей нулей  P z  в 0 : 

0 0

z

z

m ord P


         (1.6) 

Таким образом, отображение 
0

Р   является голоморфным накрытием диска конечной степени 

т , а область 0 -односвязной компонентной множества   1P z  . 

Лемма доказана. 

Комментарий. 

* Свойство односвязности следует из отсутствия критических значений на регулярных 

уровенях (результаты Лехто-Виртанена). 

* Правильность (properness) и формула (1.5) - прямое следствие принципа Аргумента (Ahlfors). 

* Формула (1.6) имеет также топологическое толкования как степень отображения 

0:Р D  . 

Теорема 1. (Автоморфизмы лемнискатных областей  и сохранение уровней) 

 

пусть ( )P z - многочлен  степани 1n   

 1 : ( ) 1z C P z                               (1.7) 

-фиксированная связная компонента лемнискатной области определённой условием ( ) 1P z   

Пусть 1( )f Aut  биективное голоморфное отображение 0 0:f   c голоморфным 

обратным 
1f 
 

Предположим, что выполняются условия  

1.  f переставляет нули многочлена Р внутри 1 с сохранением кратностей  

2. Для всех 1z выполняется равенство сохранения уровней  

 ( ) ( )Р f z P z             (1.8) 

Тогда существует константа R  , такая что  

 ( ) ( )Р f z е Р z  для всех 0z     (1.9) 

Доказательство  

1. Вспомогательная функция 

Определим голоморфную функцию:  

( ( ))
( )

( )

P f z
F z

P z
       (1.10) 
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Функция ( )F z корректно определена в 0 \ Z где  : ( ) 0Z z P z  множество нулей  

внутри Р 1  

2. Устранимость особенностей в нулях многочлена 

Пусть а Z -нуль  Р кратности 1m   и пусть ( )b f a - его образ также нуль  Р  той же 

кратности m (по условию (1)) 

Разложим функции локально в окрестностях a и b  

  ( ) ( )m

aР z z a g z  ,    ( ) 0ag a   

  ( ) ( )m

bР b g    , ( ) 0bg b   

Отображение f вблизи а имеет вид: 

 2( ) ( ) ( )f z b c z a z a     ,  
1( ) 0c f a   

Подставим ( ( ))Р f z  

2( ( )) ( ( ) ) ( ( )) ( ( ) () ) ) ( ( )) ( ) ( ( ))(1 ( ))m m m m

b b bP f z f z b g f z a z a z a g f z c z a g f z z a         

Следовательно,  

1

( ( ))( ( ))
( ) (1 ( ))

( ) ( )

m b

a

g f zP f z
F z c z a

F z g z
     

Что аналитично вблиза а.  

Значит, особенность F ва a устранима, и F продлевается до голоморфной функции на всей  

области 0 . 

3.Ограничение модуля  

Из (1.8) следует 

( ( ))
( ) 1

( )

P f z
F z

F z
   для всех 0z  

То есть ( )F z  голоморфная функция постаянного модуля 1 в области 0  

4. Постоянство функции ( )F z  не была константой, то по принципу открытого отображения 

её образ должен содержать  открытую  область в С. 

Однако (1.11) показывает, что  0( ) 1F     одномерная кривая без внутренности. Это 

невозможно для голоморфного открытого отображения. Следовательно, ( )F z  постоянна. 

( )F z е R    

5.Итоговое равенство  

Возвращаясь к (1.10), получаем:  

( ( ) ( )P f z е P z  для всех 0z  

Что и требовалось доказать. 

Комментарии  

1. Смысл условия (1.8) означает что, автоморфизм f сохраняет уровни модуля многочлена P, то 

есть отображает кривые ( )P z const  в самих себя. 

2. Сохранение кратностей условия (1)) необходимо для устранимости особенностей в нулевых 

точках ( )P z . 

3. Интерпретация формулы (1.9) все такие  автоморфизмы f  индуцируют вращение множества 

 0Р  в плоскости  , то есть f согласовано с  умножением ( ) ( )P z е P z . Группа таких 

автоморфизмов изоморфна подгруппе вращений диска ( )Аut D . 
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4. Связь с классической геометрией функций. При ( )P z z равенство (1.9) даёт стандартные 

автоморфизмы единичного диска ( )f z c z В более общем случае f - внутренний автоморфизм 

лемнискаты, согласованный с многочленом Р.  

Теорема 2. Сохранение нулей и уровней многочлена автоморфизмами лемнискаты. 

Пусть ( )P z -многочлен степени 1n   

 0 : ( ) 1z C P z              (1.12) 

-фиксированная связная компанента области лемнискаты. 

Пусть 0( )f Аut   биестивное голоморфное стображение области 0 на себя, для 

каторого выполняется:  

( ( ) ( ),P f z е P z C R                   (1.13) 

Тогда справедливы следующие утвержания. 

1. f переставляет нули многочлена P внутри  0 с сохранением их кратностей. 

2. f сохраняет все уровни функции ( )P z const . В частности, 0 0( )f д д    

Доказательство  

(а) Сохранение нулей и их кратностей  

Пусть 0а  нуль Р кратности 1m   

  ( ) ( ), ( ) 0m

a aР z z a g z g a                      (1.14) 

Из (3.11) следует 

( ( )) ( ) ( ) ( )i m

aP f z e P z c z a g z                (1.15) 

Положим ( )b f a . Так как  f голоморфно, разложим его вблизи  точки а : 

2( ) ( ) (( ) ),f z b c z a z a      

Сравнивая (1.15) и (1.17), получаем равенство главных членов: 

( ) ( )m t

b aс g b c g a  

Из (3.16) следует что ( ) 0bg b  то есть ( )b f a также является нулём Р той же кратности m. 

Следовательно, автоморфизм f переставляет нули многочлена с сохранением кратностей. 

(b) Сохранение уровней и границы  

Взяв модуль обеих частей (1.13), получаем: 

( ( ) ( ) ( )iP f z с P z Р z   

Следовательно, f сохраняет каждую линию уровня ( )P z const  в частности. 

     1

0( ) ( ) : ( ) 1 : ( ( )) 1 : ( ) 1f f z P z z P f z z P z              (1.19) 

Тем самым граница и вся структура лемнискаты инвариантны относительно f  

Комментарии  

1. Смысл равенства  (1.18) выражает локальную жёсткость автоморфизма вблизи каждого нуля 

а отображение f действует как поворот и масштаб ( ) 1
m

z b c z a c c    

2.  Геометрическая интерпретация. 

Автоморфизм f сохранет весь набор изолиний ( )P z const он действует как вращение в 

кординате ( )Р z  , поэтому группа таких f изоморфна подгруппе вращений диска. 

 1 ( )t

pf z P c P z  

3.  Роль условия ( ) 0f a   

Ненулевая производная гарантирует локальную обратимость и исключает ветвления, что 

делает сравнение порядков нулей корректным. 
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4. Аналогия с классическими случаями; 

 При  ( )P z z это даёт обычные автоморфизмы диска ( ) tf z e z  

при ( ) mP z z автоморфизмы соответствуют вращениям, сохраняющим лемнискату 1
m

z   

Теорема 3. (Конечность группы согласованных автоморфизмов. 

Пусть ( )P z  многочлен степени 1n   

 0 : ( ) 1z C P z                      (2.1) 

-фиксировнная связная компонента лемнискатной области, и  пусть 

 0: ( ) :С f Aut R     такое что 0( ( )) ( )iP f z с P z z        (2.2) 

Тогда группа  С конечна.  

Подговка обозначений  

Обозначим множество нулей  0P (с учётом кратностей) через  

 1 0,....., : ( 1,...., )я j ajZ a a m оrd P j s            (2.3) 

Каждый f С по формуле (2.2) согласован с Р и, как следует из Теоремы2, переставляет точки 

Z с. 

Шаг 1. Гомоморфизм  в группе перестановок нулей определим отображением  

: ( ), ( )( ) ( )j jС Sym Z f a f a                              (2.4) 

Из Теоремы 2 следует, что ( )f  действительно перестановка множества Z. Причём  кратности 

jm  сохраняются. Легко проверить, что  гомоморфизм групп: 

  ( ) ( )f g f g                                   (2.5) 

Так как ( )Sym Z конечная группа (множество Z конечно), то её подгруппа  im  конечна: 

im   .                                      (2.6) 

Остаётся показать, что ядро   : ( )j j jkcr f G f a a a Z      также  конечно. Тогда по 

kerG im                                   (2.7) 

Шаг 2. Оценка ker : случай 2Z   

Пусть ker f  фиксирует все нули 1,....., jа а Выберем риманову карту 

0: D    би голоморфизм.               (2.8) 

Рассмотрим  

 DAutfF  100:           (2.9) 

Так же   ,jj aaf   то F  фиксирует точки   Dap jj : . Если 2Z  то F  имеет две 

различные фиксированные внутренние точки диска; из классического описания автоморфимов D 

следует, что тогда idF   (автоморфизм диска не может иметь две разные фиксированные 

внутренние точки, кроме тождественного). Следовательно, idf  . Значит, 

  конечноidZ  ker2       (2.10) 

Шаг 3. Оценка :ker  случай 1Z  

Пусть  aZ  - единственный нуль Р  в 0 , его кратность 1: 0  Pordm . Для  kerf  

имеем   aaf  . Локальные разложения (как в теореме 2): 

        ,0,  agzgazzP
m

                                     (2.11) 

         ,0,  afcazOazcazf                           (2.12) 

Условие согласованности (4.2) даёт     zPezfР w для некоторого  f  . Сравнение 

главных членов (смотрите вывод типа (3.16)) приводит к  
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    mwwm ccagcagc                                            (2.13) 

Перейдём к модели диска, как выше:  DAutfF  100   причём     aaF   . 

Нормировкой можно считать   0а  (заменим   на 0T , где Т-подходящий автоморфизм 

диска). Тогда всякий автоморфизм диска, фиксирующий 0, имеет вид: 

   awewF w , .                                      (2.14) 

Из цепного правила получаем     wccafF  0 . Совместно с (4.13) имеем: 

     m
m

cccc mkarmwmw /2mod2 


  
                (2.15) 

То есть угол   (а значит и F , и f ) может принимать не более чем т  различных значений: 









 1,...,1,0:
2

mk
m

k

m


                                  (2.16) 

Следовательно,  

 mker                                            (2.17) 

Завершение доказательства 

Объединяя (2.6), (2.10) и (2.17), получаем 

 kerimG  

Теорема доказана. 

Комментарии и тонкие моменты 

1. Почему случай 0Z  невозможен для компоненты 1P  : по принципу аргумента, 

максимума модулей в каждой внутренней компоненте уровня 1P   многочлен Р  имеет хотя бы 

один нуль. 

2. Смысл конечности ker  при 1Z  : локальная «жёскость» в точке нуля разрешает 

только т  дискретных «вращений» (в координате  ), согласованных с глобальным условием 

 P f e P . 

3. Общий итог: группа всех автоморфизмов 0 , согласованных с Р в смысле (2.2), всегда 

конечна. При 2Z  ядро тривально; при 1Z   возможны не более т  элементов в ядре (где т - 

кратность единственного нуля). 

Заключение. В работе рассмотрены аналитико-геометрические свойства автоморфизимов 

лемнискатных областей, задаваемых уровнями модуля многочлена  P z . На основе классических 

методов теории голоморфных и квазиконфорных отображений получены строгие результаты, 

описывающие структуру таких автоморфизмов. 

1. Лемма 1 показала, что каждая связная компонента области   1P z   является 

односвязной и что отображение 0:Р D   является правильным голоморфным накрытием диска 

конечной степени, равной сумма кратностей нулей P  внутри 0 . Тем самым установлено 

топологическое соответствие между внутренней геометрией лемнискаты и структурной нулей 

многочлена. 

2. Теорема 1 доказала, что всякий автоморфизм  0f Aut  , сохраняющий уровни 

 P z const  и переставляющий нули P  с сохранением кратностей, удовлетворяет равенству 

    P f z e P z , где R  . Это равенство означает, что автоморфизмы лемнискаты 
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индуцируют вращения в кординате  w P z и, следовательно, образуют подгруппу вращений 

группы автоморфизмов диска  Aut D . 

3. Теорема 2 установила жёсткость таких автоморфизмов: они не только сохраняют уровни 

функции  P z , но и переставляют нули многочлена с теми же кратностями, обеспечивая 

локальную конформность и инвариантность границы 0 . 

4. Теорема 3 показала, что группа всех автоморфизмов, согласованных с многочленом P  в 

смысле условия  P f e P , является конечной. В частности, если внутри 0  более одного нуля, 

автоморфизм единственен (тождественный), а при единственном нуле кратности т  существует не  

более т  допустимых вращений. Этот результат раскрывает дискретную природу симметрий 

лимнискатных областей. 

Полученные утверждения формируют завершённую классификацию автоморфизмов 

лемнискат, порождённых многочленом  P z . Они показывают, что внутренняя геометрия 

лемнискаты полностью определяется распределением нулей многочлена и их кратностями, а 

допустимые преобразования сводятся к конечной группе вращений в образе диска. 

В дальнейшем эти результаты могут служить базой для расширения анализа на более общие 

классы отображений, например, для построения автоморфизмов областей, задаваемых уровнями 

гармонических субгармонических или псевдовналитических функций, где сохраняется аналогичная 

структура инвариантности уровней и жёсткости. 
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РЕШЕНИЕ НЕЛИНЕЙНЫХ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ 
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Аннотация. В данной статье исследуется нахождение элементарных решений нелинейного 

обыкновенного дифференциального уравнения, содержащего квадрат оператора Бесселя. Основной 

метод исследования основан на приведении уравнения к автономному виду с помощью подходящих 

замен и использовании операторов дробного порядка типа Эрдейи-Кобера. Рассмотрены 

специальные случаи широко используемых в физике и астрофизике уравнений, таких как уравнение 

Томаса-Ферми и уравнение Эмдена-Фаулера, для которых найдены точные (элементарные) решения 

в явном виде. Проанализированы решения линейной части уравнения, показано, что они 

представляют собой комбинацию полиномиальных, логарифмических и степенных функций. 

Полученные результаты могут быть применены в математической физике и в теории 

дифференциальных уравнений. 

Ключевые слова: оператор Бесселя, нелинейное уравнение, оператор Эрдейи-Кобера, 

уравнения Эмдена-Фаулера. 

   

BESSEL OPERATORINING KVADRATI QATNASHGAN CHIZIQSIZ ODDIY 

DIFFERENSIAL TENGLAMALARNI YECHISH 

 

Annotatsiya. Ushbu maqolada Bessel operatori kvadrati qatnashgan chiziqsiz oddiy differensial 

tenglamaning elementar yechimlarini topish oʻrganiladi. Tadqiqotning asosiy usuli tenglamani mos 

almashtirishlar yordamida avtonom shaklga keltirish va Erdélyi–Kober tipidagi kasr tartibli integrallash 

operatorlaridan foydalanishga asoslangan. Tomon–Fermi va Emden–Fouler tenglamalari kabi fizika va 

astrofizikada keng qoʻllaniladigan tenglamalarning maxsus holatlari koʻrib chiqilib, ularning aniq 

(elementar) yechimlari ochiq koʻrinishda topilgan. Tenglamaning chiziqli qismi yechimlari tahlil qilinib, 

yechimlarning koʻphad, logarifmik va darajali funksiyalar kombinatsiyasidan tashkil topishi koʻrsatilgan. 

Olingan natijalar matematik fizika va differensial tenglamalar nazariyasida qoʻllanishi mumkin. 

Kalit so‘zlar: Bessel operatori, chiziqsiz tenglama, Erdélyi–Kober operatori, Emden–Fouler 

tenglamalari. 

 

SOLUTION OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS CONTAINING 

THE SQUARE OF THE BESSEL OPERATOR 

 

Abstract. This article investigates the finding of elementary solutions for a nonlinear ordinary 

differential equation containing the square of the Bessel operator. The main research method is based on 

reducing the equation to an autonomous form using suitable substitutions and employing Erdélyi–Kober-

type fractional integration operators. Special cases of widely used equations in physics and astrophysics, 

such as the Thomas–Fermi equation and the Emden–Fowler equation, are considered, for which exact 

(elementary) solutions are found in explicit form. The solutions of the linear part of the equation are 

analyzed, showing that they consist of a combination of polynomial, logarithmic, and power functions. The 

obtained results can be applied in mathematical physics and the theory of differential equations. 

Keywords: Bessel operator, nonlinear equation, Erdélyi–Kober operator, Emden–Fowler equations. 

 

Введение. В теории дифференциальных уравнений уравнения, содержащие оператор Бесселя, 

имеют особое значение, так как они часто встречаются в различных областях физики, астрофизики, 

динамики газов и квантовой механики. Например, уравнение Томаса-Ферми в атомной физике и 

уравнение Лейна-Эмдена в астрофизике являются известными примерами таких уравнений. Эти 

уравнения обычно имеют нелинейный характер, и нахождение их точных решений является сложной 
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задачей. Уравнения, содержащие оператор Бесселя , изучались в [1], уравнение Томаса-Ферми в 

атомной физике – в [8], [7], уравнение Лейна-Эмдена в астрофизике – в [9], а их интересные 

физические и математические свойства исследовались в [10], [11]. Одним из таких уравнений 

является уравнение Фаулера-Эмдена, которое изучалось с различных точек зрения, и ему посвящены 

обширные монографии. 

В статье рассматривается нелинейное уравнение, содержащее квадрат оператора Бесселя. 

Квадрат оператора Бесселя  представляет собой дифференциальное выражение четвёртого порядка 

специальной структуры. Основной целью при решении данного уравнения является нахождение 

решений, которые могут быть выражены через элементарные функции, путём приведения его к 

автономному уравнению. 

В работе сначала анализируются решения линейной части уравнения ( ) с помощью 

оператора дробного порядка Эрдейи-Кобера. Затем на основе подходящих замен уравнение 

приводится к автономному виду. Нахождение решения основано на представлении автономного 

уравнения в виде алгебраического уравнения. 

В нашем исследовании также рассматриваются частные случаи  (производная четвёртого 

порядка) и . При этом решения выражаются в виде линейной комбинации функций вида . 

Полученные результаты имеют не только теоретическое значение, но также могут быть применены 

при решении практических задач. 

Постановка задачи. В нашем исследовании в области  , 0x R x     мы занимаемся 

нахождением решения    4
0,y x C   нелинейного обыкновенного дифференциального уравнения, 

содержащего оператор Бесселя целого порядка: 

   12 , 0 1m n

aB y x bx y x a                                                       (1) 

где 

2

2a

d a d
B

dx x dx
  – оператор Бесселя, а  – постоянные параметры, и обозначает 

соответствующее выражение. 

2
2 4 3 2 2 2

2 2 22
2 4 3 2 2 3

d a d d a d a a d a a d
Ba

x dx x dxdx dx dx x dx x

 
     
 
 
 
 

. 

Справедлива следующая теорема [1]. 

Теорема 1. Если линейная часть нелинейного дифференциального  уравнения 

           2 4

1 2

1

0, 1, 1 ... , , 0s

l
m

a s n l s

s

B y x f x y a x m m m f x C R f x


             (2) 

при помощи замены          

  ,y v x z dt udx                                                               (3) 

приводится к дифференциальному выражению с постоянными коэффициентами и 

выполняется условие:  

 4 1
,sm

s s sp u f x v p const


                                                      (4) 

то уравнение (2) преобразуется в автономное уравнение: 

     
3

0 1

0,s

l
k m

k s k

k s

b z t p z t b const
 

                                          (5) 

и решение уравнения (2) находится в виде:  

 y v x                                                               (6) 

где  является решением алгебраического уравнения: 

 
0

1

0s

l
m

s

s

b p 


  .                                                        (7) 

При построении автономного уравнения (5) общее решение линейной части уравнения (2) 

должно иметь вид [3] 
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 
3

0

kr udx

k

k

y x v C e


                                                           (8) 

или должно выполняться условие (4). 

В нашем исследовании мы используем следующие сведения: 

Дополнительные сведения 

1 Дробные интегралы Римана-Лиувилля. 

Определение 1.[4] Предположим, что    1 ,x L a b  . Тогда 

   
 

   
11

,

x

a

a

I x x t t dt x a
  





   
                                        (9) 

  
 

   
11

,

b

b

x

I x x t t dt x b
  





   
  ,                                     (10) 

где , выражение (9) называется левосторонним, а (10) – правосторонним дробными 

интегралами Римана-Лиувилля. 

2. Дробный оператор Эрдейи-Кобера 

В работах Эрдейи и Кобера была введена следующая модификация дробного интегрирования: 

 
 

 
   

2
1

2 2 2 1

,

0

2
x

x
I x x t t t dt

Г

 




  


 


  ,                                        (11) 

где    0, 0, x L R      . 

В наших дальнейших работах мы будем использовать (11) в следующем виде: 

 
 

   
1 2

1
2 2

1
,

2 0

2
x

x
I x x t t t dt

Г

 
 



 



 


   .                                (12) 

Обратный интегральный оператор к (4) выражается следующим образом: 

 
2

1 2 2 1 2( ) 1

,

0

2 1
( ) ( )

( ) 2

p x

px d
I x x t t t dt

p x dx


  

  



     

  
   

 ,             (13) 

где [ ] 1p   . 

 

Теорема 2. ([5, 6]) Если при    21
0, , 0, , 0

2

mx C b b        функция 

 
1

2 1
k

xx B x

 


     интегрируема в нуле и выполняется  2 1

0
lim 0

k
x

x

d
x B x

dx



 


    ,  

__________

0, 1k m  , 

то справедливо следующее равенство:   

       2 , ,
m m

x xB J x J B x          
        . 

Если , то справедливо следующее равенство: 

   , ,

m m
x xB I x I B x       

       . 

Теперь найдём элементарные решения следующих нелинейных уравнений. 

Применение оператора Эрдейи-Кобера для решения уравнений типа Эмдена-Фаулера или 

уравнения (1). 

Будем искать решение уравнения (1) согласно теореме 1, приравнивая линейную часть к нулю, 

 
2

2

2
0

d a d
y x

dx x dx

 
  

 
                                                   (14) 

введём обозначение в (14):   

   
2

2

d a d
y x F x

dx x dx

 
  

 
.                                                (15) 

Тогда (14) можно записать в виде:  
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 
2

2
0

d a d
F x

dx x dx

 
  

 
.                                                   (16) 

Решением уравнения (16) будет: 

    1 11
2 1 2

1

a aC
F x x C C x C

a

    


.                                           (17) 

Решение уравнения (14) является решением уравнения (15), и мы будем искать его в виде: 

 
1

,
2 2

a
y I x

 
  

 
,                                                           (18)  

где    1
,

2 2

1
,

2 2
a

a
I x I x 



 
  
 

 равно (12) при 0   

   
2

2

1
,

2 2

d a d a
I x F x

dx x dx


   
     

  
                                     (19) 

Применим теорему 2 к выражению (19):  

   
2

2

d
x G x

dx


 
 

 
,                                                        (20) 

где 

   1 1
,

2 2

a
G x I F x  

  
 

.                                                 (21) 

Общее решение уравнения (20) имеет вид: 

 
 

   
1

0 0

1

1 !

x

k

k

k

x C x x t G t dt


    ,                                      (22) 

где  
 

   2

0

0

1

1 !

x

I G x x t G t dt   . 

Сначала упростим (21), затем подставим в (22) и после некоторых вычислений получим: 

  2 3

0 1 2 3 .ax C C x C x C x                                                         (24) 

Теперь, подставляя (24) в (18) и упрощая выражение, в результате получим, что решение 

уравнения (14) равно: 

     
1

1
2 2 2

0

1

2 2

2

2

,

x aax
x t t dt

a

a
y I x

Г




 
    

 










  

 
1

1
2 2 2 32

0 1 2 3

0

2

2

x aa
ax

x t C C t C t C t dt
a

Г




       
 
 

   

  2 3

0 1 2 3

ay x A A x A x A x     .                                             (25) 

Для построения автономного уравнения для (1) выполним подстановки (3) и согласно условию 

(4), получаем 
1lnt x u x    в результате  будет равно:  

 

3

1

m

nv x



 . 

Следовательно, решение (25) выражается в виде (8) при  0 1

3 3
, 1

1 1

m m
r r

n n

 
  

 
, 

2

3
2 ,

1

m
r

n


 


  3

3
3

1

m
r a

n


  


 выполняются условие (4) и вид (8) из теоремы 1.  

Теперь для построения автономного уравнения для (1) возьмём подстановку (3) в следующем 

виде: 
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    
3

1 11 ,
m

n
xy x b x z t t x




     .                                                     (26) 

Взяв производные (26) до четвертого порядка включительно и подставив в (1), на основании (5) 

запишем автономное уравнение: 

   
4 6 4

2
1

IV m n
z t a z t

n

  
   

 

  

 

  

 
   2

2 2

3 3 3 4 3 3 5 4 3 3 4
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
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Следовательно, общее решение уравнения (1) мы ищем в виде (6), и   будет равно: 

 
1

2 1, ,n nb P m n a      ,                                                        (27) 

где   
   

 

  

 
3 2

3 2 2 1 2 2 2 13
, ,

1 1 1

m n m n m n a m n m nm
P m n a

n n n

         
 

  

 

  

 
 

2

2
2 2

2
1

a a m n
a a

n

  
  

 

. 

Используя (27), выразим элементарное решение уравнения (1) в виде (6) следующим образом: 

   
31

1 11, ,
m

nny x b P m n a x



     . 

Уравнение типа Томаса-Ферми. 

   
1 3

22

0
2 , 0,y yB x x x x



                                           (28) 

где 

4
2

0 4

d
B

dx
 . 

Решим уравнение (28) согласно теореме 1. Сначала найдем решение, приравняв линейную 

часть к нулю. 

    
2

2
0IV d

y x y x
dx

  .                                                        (29) 

Решение уравнения (29): 

  2 3

0 1 2 3y x C C x C x C x    .                                                    (30) 

Выражение (30) удовлетворяет (4) и (8) при 

1 1 7

1 4 1/2 72 2 2,u x u x v v x v x
 

       . Теперь 

построим автономное уравнение для (28), для этого возьмем производные согласно замене (3), 

подставим в (28) и получим следующее: 

            
3

25040 2414 431 34 IVz t z t z t z t z t z t       . 
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Элементарное решение уравнения (28) имеет вид (6), и  в нем находим согласно 

(7):
25040   и решение равно  .  

В случай  в уравнении (1) 

   12

1

m ny x bx xB y                                                   (31) 

  
2

2

2

1
0

d d
y x

dx x dx

 
  

 
                                               (32) 

Решение уравнения (32) с использованием (12), (13) и теоремы 2 запишем следующим образом: 

  2

1 2 3 4 lny x C C x C x C x x    .                                           (33) 

Приведём решение (33) к виду (8). 

1 2 3 4 2

1 2 3 4 1 2 3 4 ln
r udx r udx r udx r udx

v C e C e C e C e udx C C x C x C x x
           
   

Следовательно, из последнего слагаемого получаем 
1u x  и, проверив условие 

(4)

3

4 1 1 1 1

m

m n nx bx v v b x



       , находим, что оно равно. Отсюда видно, что решение уравнения 

(31) совпадает с решением уравнения (1) при .  

Заключение. В данной работе успешно найдены и проанализированы точные решения 

нелинейного обыкновенного дифференциального уравнения вида , 

содержащего квадрат оператора Бесселя целого порядка. Отмечены следующие основные 

результаты: 

1. Эффективность метода: метод приведения уравнения к автономному виду и использования 

операторов дробного порядка типа Эрдейи-Кобера оказался эффективным и позволил найти точные 

решения нелинейных уравнений. 

2. Теоретическая и практическая значимость: полученные результаты не только обогащают 

математическую теорию, но также имеют практические приложения для решения нелинейных 

дифференциальных уравнений, используемых в различных областях физики, астрофизики и техники. 

3. Возможности для дальнейших исследований: показана возможность применения данной 

методики к уравнениям, содержащим операторы Бесселя дробного порядка, что открывает новые 

направления для будущих исследований. 

В заключение следует отметить, что предложенный в работе метод доказал свою 

эффективность при нахождении точных решений нелинейных дифференциальных уравнений, 

содержащих оператор Бесселя, и для различных значений параметров были получены решения в 

явном виде. 
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ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ АНОМАЛЬНОГО ПЕРЕНОСА ВЕЩЕСТВА В 

ТРЕЩИНОВАТО-ПОРИСТОЙ СРЕДЕ  
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Аннотация. Рассмотрен аномальнный перенос вещества в трещиновато-пористой среде, 

состоящей из одиночной трещины и граничащего с ней пористого блока (матрицы). Задача численно 

решена методом конечных разностей, а дробная производная в уравнениях переноса определена в 

смысле Капуто. На основе численных расчётов показано, что уменьшение порядка производной по 

времени от 1 в уравнении переноса в матрице приводит к замедлению распространения профилей 

концентрации в матрице и одновременно к увеличению концентрационных профилей в трещине.  

Ключевые слова: диффузия, дробные производные, пористый блок, трещиновато-пористая 

среда. 

 

NUMERICAL SOLUTION OF THE PROBLEM ANOMALOUS SOLUTE TRANSPORT  

IN A FRACTURED-POROUS MEDIUM 

 

Abstract. Anomalous mass transport in a fractured porous medium consisting of a single fracture and 

an adjacent porous block (matrix) is considered. The problem is solved numerically using the finite 

difference method, and the fractional derivative in the transport equations is defined in the Caputo sense. 

Based on numerical calculations, it is shown that decreasing the order of the time derivative from 1 in the 

matrix transport equation slows the propagation of concentration profiles in the matrix and simultaneously 

increases the concentration profiles in the fracture. 

Key words: diffusion, fractional derivatives, porous block, fractured-porous medium. 

 

YORIQ-G‘OVAK MUHITDA ANOMAL MODDA KO‘CHISHI MASALASINI  

SONLI YECHISH 

 

Annotatsiya. Bitta yoriq va unga qo'shni g'ovak blokdan (matritsadan) iborat yoriq g'ovak muhitda 

anomal modda ko'chishi ko'rib chiqiladi. Masala chekli ayirmalar usuli yordamida sonli yechiladi va 

ko'chish tenglamalaridagi kasr hosilasi Kaputo tarifi orqali hisoblanadi. Sonli hisob-kitoblarga asoslanib, 

matritsadagi ko'chish tenglamasida vaqt bo'yicha hosilasining tartibini 1 dan kamaytirganda matritsadagi 

konsentratsiya profillarining tarqalishini sekinlashtiradi va bir vaqtning o'zida yoriqdagi konsentratsiya 

profillarini oshirishi ko'rsatilgan. 

Kalit so‘zlar: diffuziya, kasr tartibli hosilalar, g'ovak blok, yoriq-g'ovak muhit. 

 

Введение. Геологическое строение залежей нефти и газа обычно представляет собой сложную 

систему, и анализ массопереноса в этих средах показывает, что классическое уравнение диффузии, 

основанное на законе Фика, не способно адекватно описать аномальный характер переноса 

растворённых веществ, наблюдаемый в натурных и лабораторных экспериментах. Из-за сложности 

процессов переноса вещества в фрактальных средах для их моделирования начали применять 

нелокальные уравнения адвекции-диффузии с дробными производными по времени и координате [1]. 

Если рассматривать пористую среду как многофазное материальное тело, то в ней всегда 

можно выделить представительный элементарный объём (ПЭО), содержащий как твёрдую фазу 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  69 
 

(скелет пористой среды), так и пустотное пространство. Размер ПЭО подобран так, что физические 

параметры, представляющие распределения пустотного пространства и твёрдой матрицы в нём, 

являются статистически значимыми [2]. В частности, трещиновато-пористую среду (ТПС) можно 

рассматривать как композицию из двух хорошо различимых образований: отдельных трещин или 

сетей трещин, и твёрдой среды или пористой матрицы, находящейся между трещинами (называемой 

пористой матрицей). Подробное описание ТПС и сетей трещин можно найти в [3]. Отдельные 

трещины представляют собой плоские разрывы или две твёрдые поверхности, окружённые пористой 

матрицей. Трещины рассматриваются как пористые среды с обычно более высокой проницаемостью, 

чем прилегающая пористая матрица [4–7]. 

Многочисленные эксперименты и данные, полученные на местности, свидетельствуют о том, 

что транспорт веществ в слоистых геологических структурах проявляет аномальное поведение [8-10]. 

Это выражается, например, в необычных скоростях движения и концентрациях минералов, 

асимметрии, резких передних фронтах и продолжительных "хвостах" в концентрационных профилях 

[11–14]. Результаты, представленные в [15], также подтверждают наличие аномальной нефиковской 

диффузии в средах с сложной структурой. Анализ характеристик хранилищ ядерных отходов также 

подтверждает аномальный характер переноса загрязняющих веществ [16]. Численные эксперименты 

демонстрируют, что изменение параметров, представляющих порядки дробных производных по 

времени, позволяет получать различные временные распределения концентрации, соответствующие 

наблюдаемым в экспериментах данным. 

В данном исследовании рассматривается перенос вещества в отдельно взятом элементе 

трещиновато-пористой среды (ТПС), с учётом аномальности переноса. Моделирование транспорта 

растворённого вещества в трещине осуществляется с применением аномального уравнения 

диффузии, выведенного на основе соответствующего аномального закона Фика. Форма такого 

уравнения для диффузии через пористую среду фрактального типа базируется на концепции памяти. 

Решение данной задачи с учётом начальных и граничных условий осуществляется численно. 

Используя фрактальную производную модель, учитывается массообмен между трещиной и соседней 

пористой матрицей фрактальной геометрии. Сформулирована задача о переносе вещества при подаче 

жидкости с веществами с одного конца трещины. Получено и проанализировано численное решение 

задачи, определены поля концентрации растворённого вещества в трещине и прилегающей пористой 

среде. Исследовано влияние аномальных явлений на характеристики процесса переноса. 

Постановка задачи. Рассмотрим элемент ТПС, состоящий из одной трещины и смежного с ней 

пористого блока (матрицы). Трещина является полубесконечным одномерным объектом [17, 18], так 

что распределение вещества и течение жидкости по её поперечному сечению считается однородным. 

В такой постановке второе измерение трещины, т.е. её толщина не принимается во внимание. 

Пористый блок занимает первую четверть плоскости. Таким обзором, рассматривается область 

}.0,0{  yxR  Пусть в трещине жидкость течёт с заданной постоянной скоростью v . C 

конца 0x  трещины подаётся жидкость с концентраций вещества 
0c . Первоначально трещина и 

пористый блок считаются заполненными чистой (без вещества) жидкостью. В трещине происходит 

конвективно-диффузионный перенос вещества, а в пористом блоке – только диффузионный. Процесс 

переноса в пористом блоке считаем аномальным, а в трещине процесс происходит без проявления 

аномальных явлений.  

Уравнения переноса вещества и течение жидкости в элементе ТПС принимаем в виде: 
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где  xtcc ff ,  – концентрация вещества в трещине, 
33/ мм ;  yxtcc mm ,,  – концентрация в 

матрице, 
33 / мм ; fD  – коэффициент диффузии в трещине,  /см2

; v  – скорость движения 

жёсткости; mD  – коэффициент аномальной диффузии в матрице, 
γ/см2
;   – порядки производных, 

10   ; 0m  – коэффициент пористости матрицы; t – время, c ; yx, – координата, м . 

Так как трещина моделируется как одномерный объект, распределение концентрации по её 

поперечному сечению не рассматривается.  
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Пусть в среду с конца 0x , начиная с момента 0t  подаётся жидкость с постоянной 

концентрацией вещества 0c . Тогда начальные и граничные условия имеют вид: 

    ,0,,0,0,0  yxcxс mf          (3) 

    ,0,,0, 0  tcctс ff          (4) 

      .0,,,,0,,  xtcxtсxtc mfm         (5) 

Алгоритм численного решения. Для решения задачи (1) - (5) применяем метод конечных 

разностей [19]. В области }0,0,0{  уxTtD  вводим сетку, где T  – максимальное 

время, в течение которого исследуется процесс. Для этого интервал ),0[   по направлению x  

разбиваем с шагом 1h , а интервал ),0[   по направлению y  – с 2h , и отрезок  T,0  разбиваем на J  

частей с шагом  . В результате имеем сетку: 
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    (6) 

Уравнение (1), (2) аппроксимируются на сетке 
21hh

. Для этого используем явную схему, а 

дробные производные определим в смысле Капуто. Следовательно, аппроксимации имеют вид:  
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где 
j
kim

j
if сс ,)(,)(  – сеточные значения концентраций ),( xtс f  и ),,( yxtсm  в точках сетки ),( ij xt  

и ),,( kij yxt , соответственно,    – гамма функция. 

Начальные и граничные условия аппроксимируются как: 

0)( 0 ifc ,  0)( 0
, kimc ,   

00)( cc j
f  ,  

j
if

j
im cc )()( 0,  ,         (9) 

0)( j
Ifc ,  0)( , j

Kimc .   

Сеточные уравнения (7) и (8) приводятся к виду: 
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Результаты и обсуждение. Для расчёта полей 
j
kim

j
if сс ,)(,)(  по (10), (11) составлена 

специальная программа для ЭВМ. В расчётах использованы следующие значения исходных 
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параметров: 01,00 c , 33 /мм ; 
6105 mD , γ/см2 ; 

5102 fD , /см2 ; 5101 v , м/с ; 35,00 m  и 

различные  . 

На рисунках 1, 2 показаны сечения поверхности концентрации mс  в трёх точках ,1,0 мх   

мх 3,0 , мх 5,0 , когда диффузионный перенос в пористом блоке 

На рисунке 1 показан классический случай ,1  который происходит без проявления 

аномальных эффектов при различных значениях времени. При этом при малых значениях х  

получаются относительно большие концентрации mc . Концентрационное поле с увеличением 

времени увеличивается как по направлению х , так и по направлению у . 

На рисунке 2 показан аномальный случай, когда значения   уменьшаются от единицы. Как 

видно из рисунка, с уменьшением   от 1 профили концентрации в целом принимают заниженные 

значения. Однако, вблизи трещины профили при уменьшении   от 1  принимают завышенные 

значения.  

 

 

Рисунок 1. Профили концентраций mс  при 1,1    и различных значениях времени, 

м,х 10  (а),  м,30  (б),  м,50  (в). 
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Рисунок 2. Профили концентраций mс  при 1 , c3600t м,х 10  (а),  м,30  (б),  м,50  

(в). 

 

Заключение. Рассмотрена задача об аномальном переносе вещества в элементе ТПС, 

состоящем из одиночной трещины и присоединённого к ней пористого блока. Показано, что 

аномальный характер переноса вещества в пористом блоке элемента ТПС различным образом влияет 

на распределение его концентрации как в трещине, так и в пористом блоке. При «медленной» 

диффузии в пористом блоке процесс переноса в трещине интенсифицируется, наоборот при 

«быстрой» диффузии в простом блоке – замедляется.  
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Abstract. Recently, initial-boundary problems in a rectangular domain for differential equations in 

partial derivatives of both even and odd order have been intensively studied. In this case, non-degenerate 

equations or equations that degenerate on one side of the quadrilateral are taken as the object of study. But 

initial boundary problems (local) for equations with two or three lines of degeneracy remain unexplored. In 

this paper, in a rectangular domain, a second-order equation degenerating on two sides of the rectangular 

and contains the with fractional Caputo derivative and Riemann-Liouville integro operators has been 

considered. The solution of the considered is written as the sum of a Fourier series with respect to the system 

of eigenfunctions of the spectral problem. The uniform convergence of this series and the series obtained 

from it by term-by-term differentiation is studied. An estimate for solution to problem is obtained, from 

which follows its continuous dependence on the given functions.  

Key words: initial-boundary problem, Caputo fractional derivative, degenerate differential equation, 

MittagLeffler-type functions of two variables. 

 

KAPUTO KASR HOSILASI VA RIMAN–LYUVILL INTEGRALINI OʻZ ICHIGA OLUVCHI 

BUZULADIGAN IKKINCHI TARTIBLI TENGLAMA UCHUN BOSHLANG‘ICH-CHEGARAVIY 

MASALASI 

 

Annotatsiya. So‘nggi vaqtlarda, to‘rtburchak sohada, juft va toq tartibli xususiy hosilali differensial 

tenglamalar uchun boshlang‘ich-chegara masalalari faol o‘rganilmoqda. Bu holda o‘rganish obyekti 

sifatida yo bo‘lmasa buzilmagan tenglamalar, yoki to‘rtburchakning bir chekkasida buziluvchi tenglamalar 

olinadi. Ammo ikkita yoki uchta degeneratsiya chizig‘iga ega tenglamalar uchun boshlang‘ich-chegara 

(lokal) masalalari hali o‘rganilmaganligicha qolmoqda. Ushbu maqolada to‘rtburchak sohada, ikkita 

chekkasida degeneratsiyalanuvchi, Kaputo kasr hosilasi va Riman–Lyuvill integral operatorlarini o‘z ichiga 

olgan ikkinchi tartibli tenglama qaralgan. Qaralayotgan masalaning yechimi spektral masalaning o‘z 

funksiyalari sistemasiga nisbatan Fourier qatori ko‘rinishida yozilgan. Ushbu qator va u orqali hadma-had 

differensiallash yo‘li bilan olingan qatorning bir hil yaqinlashuvi o‘rganilgan. Masala yechimi uchun baho 

olingan, undan berilgan funksiyalarga bog‘liq holda uzluksiz bog‘liqlik kelib chiqadi. 

Kalit so‘zlar: boshlang‘ich-chegaraviy masalasi, Kaputo kasr hosilasi, buziladigan differensial 

tenglama, ikki o‘zgaruvchili Mittag–Leffler turidagi funksiyalar. 

 

НАЧАЛЬНО-КРАЕВАЯ ЗАДАЧА ДЛЯ ВЫРОЖДЁННОГО УРАВНЕНИЯ ВТОРОГО 

ПОРЯДКА С ДРОБНОЙ ПРОИЗВОДНОЙ КАПУТО И ИНТЕГРАЛОМ РИМАНА-

ЛИУВИЛЛЯ 

 

Аннотация. В последнее время интенсивно изучаются начально-краевые задачи в 

прямоугольной области для дифференциальных уравнений в частных производных как чётного, так и 

нечётного порядка. При этом в качестве объекта исследования берутся невырождённые уравнения 

или уравнения, вырождающиеся на одной стороне четырёхугольника. Однако начально-краевые 

задачи (локальные) для уравнений с двумя или тремя линиями вырождения остаются 

неисследованными. В данной работе в прямоугольной области рассматривается уравнение второго 

порядка, вырождающееся на двух сторонах прямоугольника и содержащее с дробной производной 

Капуто и интегрооператоры Римана-Лиувилля. Решение рассматриваемой задачи записывается в 

виде суммы ряда Фурье по системе собственных функций спектральной задачи. Исследуется 

равномерная сходимость этого ряда и ряда, полученного из него почленным дифференцированием. 

Получена оценка решения задачи, из которой следует его непрерывная зависимость от заданных 

функций. 

mailto:adibaxonomonova@gmail.com
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Ключевые слова: начально-краевая задача, дробная производная Капуто, вырожденное 

дифференциальное уравнение, функции типа Миттаг-Леффлера двух переменных. 

 

Introduction. It is well known that the theory of differential equations has a long and rich history. 

Until the last quarter of the twentieth century, this theory primarily focused on differential equations of 

integer order. With the development of fractional (differential and integral) analysis in the late twentieth 

century, researchers began to study differential equations involving fractional derivatives. At present, 

numerous scientific articles have been published that address initial, boundary, and spectral problems for 

differential equations (both ordinary and partial) containing differential operators of fractional order in 

various forms (see, for example, [1]– [5], and the references therein). The books [6] and [7] have played a 

significant role in the development of this area. 

Recently, there has been growing interest in the study of boundary value problems for second-order 

mixed-type equations involving fractional-order differential operators (see, for example, [8]–[14]). 

In the aforementioned and other related works, only non-degenerate equations have been considered. 

However, both local and non-local boundary value problems for degenerate partial differential equations 

involving fractional derivatives of the unknown function remain largely unstudied. The investigation of 

boundary value problems for such equations is of great importance not only from a theoretical standpoint but 

also from a practical one, as these equations frequently arise in the mathematical modeling of various 

problems in gas and hydrodynamics, the theory of small surface bendings, mathematical biology, and other 

scientific fields. 

Problem statement. Consider the following degenerate partial integro-differential equation in the 

domain  { , : 0 1,0 }:x t x t T       

         11

0 0, , , [ 1 , ]c

t t xD u t x aI u t x bu t x x x u t x
     ,   (1) 

where 1 1  , , , , ,  ,  T a b    , are given real numbers, 0T  , 0 1  , 0 1  , 

10 1  , 10 1  ,  ,u x t  - is an unknown function, 

 
 

   0

0

1
, ,

1

t

c

t zD u x t t z u z x dz





 
    

-fractional derivative in the sense of Caputo [15] of the function  ,u t x , with respect to the 

argument t , 

 
 

   
1

0

0

1
, ,

t

tI u t x t z u z x dz





 
   

-fractional integral in the Riemann-Liouville [15] sense of the function  ,u t x  with  

respect to the argument t .  

Let us study the following initial-boundary value problem for equation (1). 

Problem B . Find a function  ,u t x  with the following properties:  

1)  ,u t x ,      11 1 ,xx x u t x C
    , 

   11 1 ,x
x

x x u t x
 

 
,    0 ,c

tD u t x C   ; 

2) in the domain   satisfies equation (1);  

3) The following boundary conditions hold on  : 

     1

0,1 0, , | 0, 0,x xu t x u t x t T


     ;   (2) 

     0, , 0,1 ,u x x x       (3) 

where  x  is a given continuous function. 

Uniqueness of the solution problem B   
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Before proceeding to prove the uniqueness of the solution to the problem B , we present the following 

auxiliary lemmas. 

Lemma 1. If  0, 0V x   and  0,1  , then the following inequality holds [19]: 

     0

0

, , 0

t

c

tI x V t x D V t x dt  . 

Lemma 2. If  0,1  , then the following inequality holds [19]: 

     0

0

, , 0

t

tI x V t x I V t x dt   

Theorem 1. If 0, 0,a b   then problem B  cannot have more than one solution. 

Proof. Let us assume that there are two solutions  1 ,u t x  and  2 ,u t x  of the problem B . Their 

difference will be denoted by  ,u t x . Then the function  ,u t x  is a solution of equation (1) under 

homogeneous boundary conditions. 

We multiply equation (1) by the function  ,u t x  and integrate over the domain  : 

         
1 1

2

0 0

0 0 0 0 0

, , , , ,

T t T T

c

t t

o

dx u x t D u x t dt a dx u x t I u t x dt b dx u t x dt        
 

     11

1

0 0

, 1 ,

T

x

x

dt u t x x x u t x dx
  

  
 

Applying the rule of integration by parts to the inner integral of the last term and taking into account 

conditions (2), we have 

   11

1

2

0 0

1 ,

T

xdt x x u t x dx
   

 

         
1 1 1

2

0 0

0 0 0 0 0 0

, , , , ,

T T T

c

t tdx u t x D u t x dt a dx u t x I u t x dt b dx u t x dt 



        ,

 
from which, by virtue of Lemma 1, 2 and 0, 0a b   the equality follows: 

   11

1

2

0 0

1 , 0

T

xdt x x u t x dx
   

 

Therefore,    11 21 , 0xx x u t x
    i.e.  , 0xu t x   for  ,t x  . Then    ,u t x t , 

where  t  - is an arbitrary function. Satisfying this function with the conditions  ,0 0u t  , and taking 

into account, we obtain    , 0, ,u t x t x  . Since    ,u t x C  , then  , 0u t x  , 

 ,t x  . Then, u    1 2, ,u t x u t x ,
 
 ,t x 

 
The proof of Theorem 1 is complete. 

Study of the spectral problem. With the formal application of the Fourier method to the stated 

problem B , the following spectral problem arises: find those values of the parameter λ for which nontrivial 

solutions of the equation 

     
'

11 1 ' , 0 1Mv x x v x v x x
       

 
,    (4) 

exist, satisfying the following conditions: 
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       

   

11

1

0

, 1 ' 0,1 ;

1 0, ' | 0x

v x x x v x C

v x v x







  


    

.     (5) 

It is easy to show that the spectral problem {(4),(5)} has a solution   0v x   only for, 0   and it 

is equivalent to the following integral equation with symmetric kernel: 

     
1

0

,v x G x s v s ds       (6) 

where the function  ,G x s  is defined by formula 

 
 

 

11

11

1

1

, ;
1

,

, ,
1

s

x

dz
x s

z z
G x s

dz
x s

z z









 
 
 





 

Then, according to the theory of integral equations, the integral equation (6) therefore, the problem 

(4), (5) has a countable number of eigenvalues 1 2 30 ... ,...k         condensing at infinity, and 

the corresponding eigenfunctions        1 2 3, ,..., ,...kv x v x v x v x  form orthonormal system in the 

space  2 0,1L . 

The following lemmas can be proven on their own. Therefore, we present them without proof. 

Lemma 3. Let the function  h x  satisfy the following conditions: 

   0,1h x C       (7) 

     11 1 ' 0,1x x h x C
   ,     (8) 

 1 0h  ,        (9) 

 1

0' | 0xx h x


    ,     (10) 

   2 0,1Mh x L . Then, on the segment  0,1  it can be expanded into an absolutely and 

uniformly convergent series by the system of eigen functions   
1k k

v x



 of the problem (4), (5): 

   
1

k k

k

h x h v x




 , 

where    
1

0

k kh h x v x dx  .
 

Lemma 4. The following series converge uniformly on the segment  0,1 : 

     
2

2

2
1 1

1 '
,

k
k

k kk k

x x v xv x


 

 

 

 
   . 

Lemma 5. If function  h x  the conditions (7), (9),      11
'/2/2

21 0,1x x Mh x L
      hold 

true, then the inequality 
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   11

1
22

1 0

1 'k k

k

h x x h x dx






      , 

is valid, where    
1

0

k kh h x v x dx  . 

Lemma 6. If function h(x) the conditions (7)-(10), and  Mh x  function conditions (7), (9) 

     11
'/2/2

21 0,1x x Mh x L
      hold true, then the inequality  

    11

1 2
'3 2

1 0

1k k

k

h x x Mh x dx






      , 

is valid, where    
1

0

k kh h x v x dx  . 

Uniqueness and stability of a solution to problem B  

The solution to the problem B  is formally sought in the form  

     
1

, k k

k

u x t u t v x




 ,      (11) 

where  ,kv x k N  are the eigen functions of the problem (4), (5) and  ,ku t k N  are the 

unknown functions to be determined. 

Substituting (11) into (1) and (3), with respect to   ,ku t  we obtain the following problem: 

       0 0 0, 0c

t k t k k kD u t aI u t b u t t T        ,   (12) 

 0k ku  ,       (13) 

where    
1

0

,k kx v x dx k N   . 

 To solve this problem, we apply the operator I α 0t to equation (12) and, using the properties 

     0 0 0c

t t k k kI D u t u t u     and    0 0 0t t k t kI I u t I u t     and condition (13), we obtain the 

Volterra integral equation of the second kind: 

       0 0k t k k t k ku t aI u t b I u t       ,    (14) 

To solve equation (14), we apply the method of successive approximations: 

         , ,0 0 , 0 ,k m k t k m k t k mu t u t aI u t b I u t      , 1,2,3,...,m    ,0k ku t  . (15) 

Using formula    0 0 0t t k t kI I u t I u t    , we calculate  ,k mu t : 

         , 0 ,0

0 0

m n
jn j n j jj

k m n k t k

n j

u t C a b I u t
 


  

 

    ,   (16) 

where     , 
 

!

! !

j

n

n
C

j n j



.  

 According to the theory of integral equations [18], if there exists  ,lim k m
m

u t


 uniformly in t, then 

its limit function is a solution of the integral equation (14). 

Passing to the limit at m  in (16) and substituting the expression  ,0ku t , we obtain a 

solution to equation (14) in the form 
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         0

0 0

1
n

n j j n j jj

k k n t

n j

u t C a b I
 

 


  

 

    ,    (17) 

Using the formula  
 

2

2

0

2

1
1

t

t
I






 

, we can write (17) in the form 

     
 

  0 0 1

n j jn
jn jj

k k n k

n j

t
u t C a b

n j j

 

 
 

 


 

   
   

   (18) 

We will prove that the series (18) is convergent a little later. 

Using the formula [20] , ,

0 0 0

k

k n k n

k n n k n

B B
  

   

  , we can write (18) in the form 

     
 

  0 1

n j j
jn jj

k k n k

j n j

t
u t C a b

n j j

 

 
 

  


 

   
   

 . 

If we introduce the notation n j m   here, we can write the last equation in the form 

     
 0 0 1

m j
jmj

k k m j k

j m

t
u t C a b

m j

 

 
 

 



 

   
  

 . 

This equation can be written using the Mittag-Leffer function of two variables as follows: 

 
 2

1,1,1;1,0;

1, , ;1,1;1,1;
k k

k

t
u t E

b t








  

 
     

,  0,t T ,   (19) 

where 2E -Mittag-Leffer function of two variables [21] 

1 1 1 2 2

2

1 3 2 2 4 3 3

, , ; , ;

, , ; , ; , ;

x
E

y

    

      

 
 

 
 

   

     
1 1 2

1 2

0 0 1 3 2 2 4 3 3

m n
m n m

m n

x y

m n m m

  
 

      

 


 


      

 ,   (20) 

1 2 1 2, 1 2 1 2 3, , , , , , , , ,x y R          , 

 
 

 1 1

1 1 1

1

1
m n

m n
 

  




  



. 

If 3 4 1 2 0        and 2 3 1 0     , then the series (20) is absolutely and uniformly 

convergent for arbitrary  ,x y  [22]. 

It is not difficult to show that the following formulas are valid for the function 2E : 

   0 2 2

1,1,1;1,0; 1,1,1;1,0;

1, , ;1,1;1,1; 1 , , ;1,1;1,1;
t

k k

t t
I E t E

b t b t

 

 

 

 

     

     
                

, 

 
    0 2 ,1

1,1,1;1,0;

1, , ;1,1;1,1;

c

t k k

k

t
D E b E b t

b t



 




 

  

  
            

 

 2

2,1,1;1,0;

1 , , ;2,1;1,1; k

t
t E

b t



 






    


 

       
, 
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 2

1,1,1;1,0;

1, , ;1,1;1,1; k

t
E

b t







  

 
    

 

  
 ,1 2

2,1,1;1,0;

1, , ;2,1;1,1;
k

k

t
E b t t E

b t



 

 


 

   

 
         

, 

   2 2

1,1,1;1,0; 2,1,1;1,0;

1 , , ;2,1;1,1; 1 , , ;2,1;1,1;k k

t t
E E

b t b t

 

 

 

        

    
                

 
 2

2,1,1;1,0;

1, , ;2,1;1,1;
k

k

t
b t E

b t










   

 
       

, 

where  
2 2,E z   - Mittag-Leffler function [15]: 

 
 2 2,

0 2 2

k

k

z
E z

k
 

 






 

 , 2 0  . 

Using these formulas, it can be proven that (19) is a solution to problem (12), (13). 

It can be shown directly that (19) can be written in the form 

 
 

 
1

1,1/2

1,

0 0

1
1

k k

e
u t e t




   
 

 


   
 

   

 1,1/2

1, ke b t d d 

     
    ,  0,t T     (21) 

where  3 3

3 3

,

,e z
 

   - Wright-type function [5]: 

 
   

3 3

3 3

,

,

0 3 3 3 3

k

k

z
e z

k k

 

 
   






   

 , 3 0  , 3 3  .  (22) 

If 0z  , 3 0  , 3 3   the following inequality holds for function (22) [see page 87 in [5]: 

 
   

3 3

3 3

,

,

3 3

1
e z
 

 
 


 

      (23) 

If we say 0a  , 0b   and note that 0k  , then using inequality (23), we obtain the following 

inequality for (21): 

 k ku t  ,  0,t T .     (24) 

Substituting (19) into (11), we find a formal solution to the problem pqA : 

 
 

 2

1

1,1,1;1,0;
,

1, , ;1,1;1,1;
k k

k k

t
u t x E v x

b t








  





 
     
 ,       (25) 

Theorem 2. If 0a  , 0b  , p q  and function  x  satisfy the conditions of Lemma 6, then of 

the series (25) determines the unique solution of the problem pqA . 

Proof. To prove the theorem, it is sufficient to prove that the series (25) and the series corresponding 

to the functions    1

1 1 ,xx x u x t
   converge uniformly in  , and the series corresponding to the 
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functions    11 1 ,x
x

x x u t x
 

 
    0 ,c

tD u t x C    converges uniformly on any compact 

1  . 

Consider the series corresponding to the function    11 1 ,x
x

x x u t x
 

 
. 

Using inequality (24), then from (25) follows the inequality 

       1 11 1

'

1

1 , 1 'x k k
x

k

x x u t x x x v x
  





     
    . 

Hence, by virtue of equation (4), on any compact set 1  , we have 

     11

1

1 ,x k k k
x

k

x x u t x v x
  





  
   .    (26) 

Based on the Cauchy-Schwartz inequality, we have 

 
   

1/2
2

3/2 3 2

1 1 1 1

k k

k k k k k k k

k k k k kk

v x v x
v x     



   

   

 
   

 
    . 

Here, by Lemmas 6 and 4, the series on the right-hand side converge uniformly with respect 

to  0,1x . Then the series on the left-hand side converges uniformly with respect to  0,1x . 

Therefore, the series (26) converges absolutely and uniformly on the compact set 1  . The 

convergence of the remaining series are proved similarly. Theorem 2 has been proved. 

Theorem 3. If the conditions of Theorem 2 are met, then the following estimate is true for the solution 

of problem B : 

 
 

 
2

1
,

, '
C L r

u x t C x

      (27) 

where 
 

 1
0,1

sup ,C G x x ,      
2

1

2

,
0

L r
f x r x f x dx  ,     11 1r x x x

  . 

 Proof. By virtue of Lemma 4, Lemma 5 and the inequality  k ku t  , the following 

inequalities hold: 

       
 

1 1 1

, k

k k k k k k

k k k k

v x
u x t u t v x v x  



  

  

       

 
       

 2,

1/2 1/2
2 1

22

1 0,1
1 1 0

, 1 ' '
r

k

k k L
k k k

v x
G x x x x x dx C x

   


 

 

 
      

 
    

From this, inequality (27) follows. Theorem 3 is proven. 

Conclusion. In this paper, a non-local initial-boundary value problem for a degenerate secondorder 

equation with a fractional Caputo derivative and a Riemann–Liouville integral is considered in a rectangular 

domain. Using the method of separation of variables, a solution to the problem is obtained in the form of a 

series that converges absolutely and uniformly in the closure of the domain under consideration. In addition, 

the uniqueness of the solution and its continuous dependence on the given functions are established. 
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Annotatsiya. Ushbu maqolada texnologik jarayonlar stabilligini nazorat qilish uchun an’anaviy 

Shuxart kartalarining imkoniyatlarini kengaytiruvchi uch komponentli statistik tizim taklif etilgan. Ma’lumki, 

Shuxartning to‘rtta asosiy qoidasi jarayon o‘rtachasi va dispersiyasidagi o‘zgarishlarni aniqlasada, 

taqsimot shaklining buzilishini qamrab olmaydi. Shu sababli maqolada o‘rtacha qiymat, dispersiya va 

taqsimotni bir vaqtda baholovchi kompleks nazorat mexanizmi nazariy asoslab berilgan. Smirnov statistik 

alomatiga asoslangan metodika texnologik jarayonlarni chuqur tahlil qilishda, xususan avtomobil bo‘yash 

sexida gruntovka qalinligini nazorat qilish misolida samaradorligi bilan namoyon bo‘ladi. Yondashuv 

statistik boshqaruvni yanada ishonchli tashkil etish, nosozlik sabablarini aniqlash imkonini beradi. 

Kalit so‘zlar: jarayonning stabilligini aniqlovchi qoidalar, Shuxartning nazorat kartalari, Smirnov 

alomatiga asoslangan nazorat karta, gruntovka qalinligi texnologik operatsiyasi. 

 

THREE-COMPONENT SYSTEM FOR PROCESS STABILITY CONTROL 

 

Abstract. This article proposes a three-component statistical system that expands the capabilities of 

traditional Shewhart charts to control the stability of technological processes. It is known that Shewhart's 

four basic rules, while determining changes in the mean and variance of the process, do not cover the 

violation of the distribution shape. Therefore, the article theoretically substantiates a complex control 

mechanism that simultaneously evaluates the mean, variance, and distribution. The methodology based on 

the Smirnov statistical sign is effective in in-depth analysis of technological processes, in particular, in the 

example of controlling the thickness of the primer in a car paint shop. The approach allows for more reliable 

organization of statistical control and identification of the causes of failures. 

Keywords: rules for determining process stability, Shewhart control charts, Smirnov-based control 

chart, technological operation of primer thickness. 

 

ТРЁХКОМПОНЕНТНАЯ СИСТЕМА КОНТРОЛЯ СТАБИЛЬНОСТИ ПРОЦЕССА 

 

Аннотация. В данной статье предлагается трёхкомпонентная статистическая система, 

расширяющая возможности традиционных карт Шухарта для контроля устойчивости 

технологических процессов. Известно, что четыре основных правила Шухарта, определяя изменения 

среднего значения и дисперсии процесса, не охватывают нарушение формы распределения. Поэтому 

в статье теоретически обоснован комплексный механизм контроля, одновременно оценивающий 

среднее значение, дисперсию и распределение. Методология, основанная на статистическом 

признаке Смирнова, эффективна при глубоком анализе технологических процессов, в частности, на 

примере контроля толщины грунтовки в окрасочном цехе автомобилей. Подход позволяет более 

надёжно организовать статистический контроль, выявить причины отказов. 

Ключевые слова: правила, определяющие устойчивость процесса, контрольные карты 

Шухарта, контрольная карта, основанная на признаке Смирнова, технологическая операция 

толщины грунтовки. 

 

Kirish. Statistik sifat nazorati tizimlarida Shuxart kartalari uzoq vaqt davomida asosiy vosita bo‘lib 

kelgan. Bu kartalar bilan jarayonni stabilligini quyidagi o’rtacha kvadratik og’ish (σ)ga asoslangan 4 ta qoida 

yordamida amalga oshirilgan:  
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1) 1-qoida: Agar biror nuqta 3σ dan tashqarida joylashsa, jarayonda keskin o‘zgarish mavjud va 

jarayon stabil emas.  

2) 2-qoida: 3 ta ketma-ket nuqtadan 2 tasi 2σ dan tashqarida bo‘lsa, jarayon stabil emas.  

3) 3-qoida: 5 ta nuqtadan 4 tasi 1σ dan tashqarida bo‘lsa, jarayonda sistematik o’zgarishlar mavjud, 

ya’ni jarayon statsionar emas. 

4) 4-qoida: 8 yoki undan ko‘p ketma-ket nuqtalar markaziy chiziq (μ-ning bahosi)ning bir tomonida 

bo‘lsa, o‘rtacha qiymat(μ) siljigan. 

Bu qoidalar jarayonning faqat o‘rtacha va dispersiya o‘zgarishlarini aniqlaydi, ammo taqsimot shaklini 

nazorat qila olmaydi.  

Hozirgi kunda murakkab texnologik, biologik, pedagogik va tabiiy jarayonlar statistik tahlili yanada 

nazariy asoslangan yondashuvlarni talab qilmoqda. Shu sababli, jarayonning stabilligini to‘liq tasdiqlash 

uchun o‘rtacha, dispersiya va taqsimot shaklini nazorat qiluvchi uch komponentli tizimni yaratish zarur 

bo‘ladi. 

1. Metod. Taklif etilgan nazariy induktiv metodda stabillikni nazorat qilish uch xil nazorat 

kartaga asoslanadi: 

1) X̄-karta (o‘rtacha qiymatlar kartasi) [1], [2] – o‘rtacha qiymatning turg’unligini baholaydi: 

- Nazorat chegaralari:  

LCL(Quyi nazorat chegara)  bu yerda n –tanlanma hajmi. 

- Stabillik sharti: barcha nuqtalar chegaralar orasida bo‘lishi, trend yo‘qligi. 

2) S-karta (standart og‘ish kartasi) [1], [2] – jarayon dispersiyasining o‘zgarishini kuzatadi: 

- Nazorat chegaralari: ,  ,bu yerda  - S ning kichik guruhlar bo’yicha o’rtacha 

bahosi,  va koeffisientlar tanlanma hajmiga qarab jadvallardan aniqlanadi [1]. 

- Stabillik sharti: barcha nuqtalar chegaralar orasida bo’lishi. 

3) S (Smirnov)- nazorat kartasi [3] – taqsimot shaklining o‘zgarishini aniqlaydi. 

Agar birlik  momentlarda to‘plangan ma’lumotlarning variatsion qatori  

 tanlanmalar uchun quyidagi munosabat o‘rinli bo‘lsa: 

    (1) 

 u holda texnologik jarayon stabil holatda bo‘ladi. (1) da -nominal normal taqsimot bilan 

tanlanmaga mos emperik taqsimot funksiya orasidagi maksimal farqni bildiradi va u stabillikni 

baholaydi. - nazorat kartaning yuqori chegarasi,  Smirnov taqsimoti kvantili bo‘lib tenglama 

ildizi sifatida taqribiy topiladi, jumladan, =1,035. Agar  birlik vaqtlarda  tengsizlik 

o‘rinli bo’lsa texnologik jarayon stabil bo‘ladi aks holda nostabil bo‘ladi. Ushbu nazorat karta Smirnov 

kriteriysiga asoslangan holda quyidagi teoremaga asosan hosil qilingan: 

Teorema [4].  va  gipoteza o‘rinli bo‘lsa, u holda -nazorat 

karta uchun nazorat qilinuvchi miqdor  va  kabi topiladi. 

Izoh. Bunda jarayonga mos normal taqsimot bo’lib, uning parametrlari jarayon statistik 

nazoratda bo’lganda optimal baholanib topilgan.  

Har bir parameter (matematik kutillma va dispersiya bahosi,  stabillik talabi sifatida mustaqil 

nazorat qilinadi. Jarayon stabilligi har bir tanlanma uchun quyidagi shart bilan aniqlanadi: 

matematik kutilmani turg’unligi; 

dispersiyani turg’unligi; 

taqsimot shaklining o‘zgarmasligi. 

Bu yondashuv jarayonning to‘liq stabilligini aniqlash imkonini beradi. 

Taqdim etilgan metodika qo‘llanilganda har bir vaqt oralig‘ida birlik vaqtlardagi ma’lumotlar asosida 

tanlangan statistik kriteriylarga asoslangan formal tekshiruv amalga oshiriladi. 

2. Natijalar. Tahlil natijalari shuni ko‘rsatadiki, Shuxart qoidalari faqat o‘rtacha va dispersiyaga 

oid ayrim holatlarni aniqlaydi.  

Ammo ular taqsimot shakli o‘zgarishini butunlay nazardan chetda qoldiradi. Uch komponentli tizim 

esa barcha ehtimoliy stabillik buzilishlarini qamrab oladi:  

o‘rtacha siljishi; 

dispersiya oshiishi yoki kamayiishi; 
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 taqsimotning assimetriya yoki “og‘ir dum”larga o‘tishi. 

Bu yondashuv jarayonning istalgan turdagi statistik o‘zgarishlarini erta aniqlash imkonini beradi. 

Fikrimizni tasdiqlash maqsadida avtomobil zavodining bo‘yash sexidagi muammolarni o‘rganish uchun 

olingan ma’lumotlar asosida texnologik jarayon stabilligini aniqlash jarayonini keltiramiz 

Masala. Bo‘yash sexida Cobalt mashinasini gruntovka qilishda nosozliklar topilgan. Sabablarini 

aniqlash va choralarini topish, jarayonni statistik boshqariladigan holatga keltirish talab qilinadi. 

Texnologik operatsiya tavsifi Cobalt mashinasining payvandlangan korpusi liniyada bo‘yash sexiga 

kiritiladi va robotlar yordamida gruntovka qilinadi. Gruntovka qalinligi bo‘yicha andoza  mk kabi. 

Endi yuqorida keltirilgan uch xil nazorat kartalar bilan quyidagi ishlarni amalga oshramiz:  

1. Maxsus tuzilgan kod asosida ma’lumotlarga asosan nazorat kartalar qurish va jarayonning 

holatini aniqlash; 

2. Jarayonning potentsial ko‘rsatkichini aniqlash. Holat bo‘yicha tashxis qo‘yish. 

Ma’lumotlarni tayyorlash statistik tahlil. Gruntovka qalinligini o‘lchovchi asbobi bilan o‘lchash 

ishlari bajariladi.Ma’lumotlar asosida Smirnov nazorat kartasini birlik vaqtlarida diagrammasini 

quramiz. 

 
1-rasm. -nazorat karta 

1-rasmgagi diagrammaga asosan birlik vaqtlarda jarayon stabil,  birlik vaqtda esa 

stabillik buzilyapti. Buni sababini aniqlash uchun qo‘shimcha tekshiruvlar Shuxartning  qo’shloq 

nazorat kartasi bilan amalga oshiramiz. 

Jarayon holatini  hajmli oniy tanlamalardan  iborat  k=30 ta  kichik guruhlar tuzib  

qo’shaloq nazorat kartalar diagrammasini quramiz. 
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2-rasm.   nazorat karta 

 
3-rasm.  nazorat karta 

NKning o‘qish qoidasiga ko‘ra [1],[2] sexdan olingan ma’lumotlar uchun o‘rta qiymatlar  kartasida 

(2-rasm) hamma nuqtalar  CL dan yuqorida joylashgan va UCL dan yuqorida nuqtalar mavjud, variatsiya 

qulochi  kartasida(3-rasm) esa deyarli hamma nuqtalar CL dan quyida joylashgan. Bu anomaliy holatlar 

gruntovka qalinligida andozadan chetlanishlar mavjudligini ko’rsatadi. Ishlab chiqarishda bunga turli 

sabablar bo’lishi mumkin, masalan, kraskani qo’yilib ketishi, elektr tizimidagi nosozliklar, roborlarni nosoz 

ishlashi kabi. Shu sexdagi mas’ullar bu nosozliklar robotlar tamonidan yon tomonlarga qaraganda old va 

orqa kapotlarga qalinroq gruntovka qilinishi deb aniqlashdi. Bu gruntovka qiluvchi robotni to‘la 

mukammallashtirilmaganligi sabab bo’lishi mumkin deb ko‘rsatdilar. Bunda hisoblaslar texnologik 

jarayonning o‘rtacha potentsial ko‘rsatkichi, ya’ni chiqayotgan sifatsiz mahsulotlar ulushi 13,7% ni  tashkil 

etadi. Nosozlikni vaqtida to’g’rilash katta chiqimni oldini oladi. Bizning eng muhim natijamiz jarayonlarni 

uch komponentali tizim asosida yuqoridagi kabi stabilligini ta’minlab turishdan iborat. 

Munozara. Uch komponentli tizim Shuxart qoidalarining induktiv tabiatiga nisbatan ancha ishonchli.  

U taqsimotga bog‘liq emas, chunki S statistiklari umumiy ko‘rinishdagi taqsimotlarni baholash 

imkonini beradi. Shuningdek, bu metod tabiiy eksperimental ma’lumotlarda uchraydigan taqsimot shaklining 

buzilishlarini ham aniqlaydi, bu esa Shuxart metodologiyasida mavjud bo‘lmagan imkoniyatdir. 

Xulosa. Tadqiqot natijalariga ko‘ra, jarayon stabilligini to‘liq tasdiqlash uchun uch parametr  – 

o‘rtacha, dispersiya va taqsimot shaklini nazorat qilish zarur. Shu maqsadda taklif qilingan uch komponentli 
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nazorat kartalari tizimi: nazariy asoslangan; universal; yuqori sezgirlikka ega va Shuxart qoidalarining to‘liq 

o‘rnini bosuvchi vosita sifatida baholanishi mumkin. 

Ushbu tizim texnologik, biologik, pedagogik va boshqa murakkab jarayonlarni nazariy asoslangan 

tarzda boshqarish imkonini beradi. 
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ON DYNAMICS OF A SEPARABLE CUBIC STOCHASTIC OPERATORS IN 
2S   

 

Baratov Bakhodir Soyib ugli, 

Faculty of Mathematics, Karshi State University, teacher 

baratov.bahodir@bk.ru  

 

Abstract. In this paper, we study a class of separable cubic stochastic operators defined on a finite-

dimensional simplex. That is, we consider cubic stochastic operators defined as a product of three linear 

operators defined on a simplex. It is shown that for a separable cubic stochastic operator defined on a two-

dimensional simplex, the vertices of the simplex are fixed points. It is also proven that the orbit of a 

separable cubic stochastic operator converges for any starting point taken from the simplex. 

Keywords: cubic stochastic operator, separable cubic stochastic operator, orbit, simplex. 

 
2S  DA ANIQLANGAN SEPARABEL KUBIK STOXASTIK OPERATORLARNING 

DINAMIKASI HAQIDA  

 

Annotatsiya. Ushbu maqolada ikki o‘lchamli simpleksda aniqlangan separabel kubik stoxastik 

operatorning dinamikasi o‘rganilgan. Ya’ni, simpleksda aniqlangan uchta chiziqli operatorlarning 

ko‘paytmasi sifatida aniqlangan kubik stoxastik operatorlarni ko‘rib chiqamiz. Ikki o‘lchamli simpleksda 

aniqlangan separabel kubik stoxastik operator uchun simpleksning uchlari qo‘zg‘almas nuqtalar ekanligi 

ko‘rsatilgan. Shuningdek, separabel kubik stoxastik operatorning orbitasi simpleksdan olingan har qanday 

boshlang‘ich nuqta uchun yaqinlashuvchi ekanligi isbotlangan. 

Kalit so‘zlar: kubik stoxastik operator, separabel kubik stoxastik operator, orbita, simpleks. 

 

О ДИНАМИКЕ РАЗДЕЛИМОГО КУБИЧЕСКОГО СТОХАСТИЧЕСКОГО  

ОПЕРАТОРА В 
2S  

 

Аннотация. В данной работе мы изучаем класс разделимых кубических стохастических 

операторов, определённых на конечномерном симплексе. То есть, мы рассматриваем кубические 

стохастические операторы, представленные как произведение трёх линейных операторов, 

определённых на симплексе. Показано, что для разделимого кубического стохастического 

оператора, определённого на двумерном симплексе, вершины симплекса являются неподвижными 

точками. Также доказано, что орбита разделимого кубического стохастического оператора 

сходится для любой начальной точки, выбранной из симплекса. 

Ключевые слова: кубический стохастический оператор, разделимый кубический 

стохастический оператор, орбита, симплекс. 

 

Introduction. Many systems can be represented using nonlinear operators. Among the simplest 

nonlinear examples is the quadratic stochastic operator (QSO). This operator models the evolution of a 

population and was originally introduced by Bernstein in [1]. 

For more than 80 years, the theory of QSOs has been developed and many papers were published (see 

e.g. [4]-[8], [16]-[17]). In recent years it has again become of interest in connection with its numerous 

applications in many branches of mathematics, biology and physics. 

Let  1,2,...,E m  be a finite set and the set of all probability distribution on E  

      1

1

1

, : 0, 1
m

m m

m i i

i

S x x x x x



 
     
 

                                                   (1) 

be the  1m  -dimensional simplex. A QSO is a mapping defined as 1 1: m mV S S   of the simplex into 

itself, of the form   1mV S  x x , where 

,

, 1

, ,
m

k ij k i j

i j

x P x x k E


                                                                (2) 

and the coefficients 
,ij k

P  satisfy 
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, , ,

1

0, 1
m

ij k ji k ij k

k

P P P


         for all    , .i j E                                     (3) 

The trajectory (orbit)   
0

n

n
x , of V  for an initial value  0 1mS x  is defined by 

         1 1 0
, 0,1,2,... .

n n n
V V n

 
  x x x  

One of the main problems in mathematical biology is to study the asymptotic behavior of the 

trajectories. This problem was solved completely for the Volterra QSO. 

The operator V  is called Volterra QSO, if 
,

0
ij k

P   for any  , , , ,k i j i j k E  . For the Volterra QSO 

the general formula was given in [4], 

1

1
m

k k ki i

i

x x a x


 
   

 
 ,                                                                   (4) 

where 
,

2 1
ki ik k

a P   for i k  and 0
kk

a  . Moreover, 
ki ik

a a   and 1
ki

a   for all ,i k E . 

In [4], the theory of Volterra QSO was developed using theory of the Lyapunov functions and 

tournaments. But non-Volterra QSOs were not completely studied. Because, there is no general theory that 

can be applied for study of non-Volterra operators. 

In [16] Separable Quadratic Stochastic Operators (SQSOs) where introduced. Volterra QSO (4) has a 

form as SQSO, but in [17] it was proved that it coincides with a SQSO if and only if it is a linear operator. 

In recent years, Cubic Stochastic Operators (CSOs) have begun to be studied, which different from 

quadratic operators [8-10].  

In this paper we consider another class of cubic operators which we call separable cubic stochastic 

operators [11-13]. 

In Section 2, we recall the definition of CSOs and definitions and known results. In Section 3 for a 

SCSO defined on the two-dimensional simplex, we prove that it has three fixed points and we find the 

boundary 2S  is an invariant set.  

Preliminaries and known results. Separable quadratic stochastic operator. Let us recall some 

necessary definition and notations. In [18] Separable Quadratic Stochastic Operators were introduced as 

follows: The QSO (2), (3) with additional condition  

,ij k ik jk
P a b           for all              , ,i j k E                                              (5) 

where ,
ik jk

a b   entries of matrices  ik
A a  and  jk

B b  such that the conditions (3) are satisfied for 

the coefficients (5). 

Then the QSO V  corresponding to the coefficients (5) has the form. 

        k k k k
x V A B  x x x ,                                                         (6) 

where   
1

m

ik ik
i

A a x


x ,   
1

m

jk jk
j

B b x


x . 

Definition 1. [16] The QSO (6) is called separable quadratic stochastic operator (SQSO). 

Cubic stochastic operator. The CSO is a mapping 1 1: m mW S S   of the form 

,

, , 1

, ,
m

l ijk l i j k

i j k

x P x x x l E


                                              (7) 

where 
,ijk l

P  are coefficients of heredity such that 

, ,

1

0, 1, , , .
m

ijk l ijk l

l

P P i j k E


                                       (8) 

and we suppose that the coefficients 
,ijk l

P  do not change for any permutation of , ,i j k . 

For a given  0 1mS x , the trajectory 
  

0

n

n
x  of initial point  0

x  under action of CSO (8) is defined 

by 
    1n n

W

x x , where 0,1,2,...n   with  0

x = x . Denote by 
  0

 x  the set of limit points of the 

trajectory 
  

0

n

n




x . Since 

   1

0

n m

n
S





x  and 1mS   is a compact set, it is follows that 

  0
 x . If 

  0
 x  

consists of a single point, they the trajectory converges and   0
 x  is a fixed point of the operator W . A 
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point 1mS x  is called a fixed of the W  if  W x x . Denote by  Fix W  the set of all fixed points of the 

operator W , i.e. 

    1Fix :mW S W  x x x . 

Let     /
i j

DW W x   x x  be a Jacobian of W  at the point 
x . 

Definition 2 ([3]): A fixed point 
x  is called hyperbolic if its Jacobian  DW 

x  has no eigenvalues 

on the unit circle in . 

Definition 3 ([3]): A hyperbolic fixed point 
x  is called: 

(i) attracting if all the eigenvalues of the Jacobian  DW 
x  are in the unit disk; 

(ii) repelling if all the eigenvalues of the Jacobian  DW 
x  are outside the closed unit disk; 

(iii) a saddle otherwise; 

Main result. In this section we consider CSO (7), (8) with additional condition 

,ijk l il jl kl
P a b c ,      for  all           , , ,i j k l E ,               (9) 

where , ,
il jl kl

a b c   entries of matrices  il
A a ,  jl

B b  and  kl
C c  such that the conditions (8) 

are satisfied for the coefficients (9). 

Then the CSO W  corresponding to the coefficients (9) has the form 

           l l l l l
x W A B C  x x x x                                         (10) 

where   
1

m

il il
i

A a x


x ,   
1

m

jl jl
j

B b x


x  and   
1

m

kl kl
k

C c x


x . 

Definition 4. [11] The CSO (10) is called separable cubic stochastic operator (SCSO). 

Let us consider the following matrices: 

1 0 0 1 0,5 0 1 1 1

0 1 0 , 1,5 1 1 , 1 1 2 .

0 0 1 1 1 1 2 2 1

A B C

     
     

       
     
     

                    (11) 

Then corresponding SCSO 2 2:W S S  is: 

  

  

  

1 1 1 2 3 1 2 3

2 2 1 2 3 1 2

3 3 2 3 1 2 3

1,5 2 ,

: 0,5 ,

2 .

x x x x x x x x

W x x x x x x x

x x x x x x x

     

    


    

                               (12) 

Using the equation 
1 2 3

1x x x    we rewrite the operator (12) as follows 

  

  

  

1 1 2 3

2 2 3 1

3 3 1 2

1 0,5 1 ,

: 1 0,5 1 ,

1 1 .

x x x x

W x x x x

x x x x

   

   


   

                                                  (13) 

Let a face of the simplex 2S  be the set   2 : 0, 1,2,3
i

S x i


     x .  

Let the set  2 2

1 2 3
int : 0S S x x x  x  and let the set 2 2 2\ intS S S   be the interior and the 

boundary of the simplex 2S , respectively. Let  1
1,0,0e ,  2

0,1,0e ,  3
0,0,1e  be the vertexes of the 

two-dimensional simplex. 

Lemma 1. For the SCSO W  (12), the following assertions true: 

(i) The face 
 1,2

 , 
 1,3

 , 
 2,3

  of the simplex 2S  are invariant sets; 

(ii)    1 2 3
Fix , ,W  e e e ; 

(iii) The fixed point 
1

e  is a attracting point, 
2

e  is a repelling fixed point and the fixed point 
3

e  is a 

saddle point. 

Proof: (i) Obviously. 

(ii) To find the fixed points we consider the equation  W x x , that is the following system of 

equations 
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  

  

  

1 1 2 3

2 2 3 1

3 3 1 2

1 0,5 1 ,

1 0,5 1 ,

1 1 .

x x x x

x x x x

x x x x

   


  


  

                                                                (14) 

(a) Let 
1

0x  . Then from the third equation of (14) it follows  

3 3 2 3
x x x x       

3
0x     and   

2
1 1 x  . 

It is clear that if 
3

0x   then we have 
2

1x  . If 
3

0x   then from the last equation one has  

2
0x       

3
1x  . 

We take solution 
2

1x  , then it follows that 
3

0x  . Consequently, if 
1

0x  , we obtain the fixed points 

2
e , 

3
e  

Similarly, in the case 
2

0x   and 
3

0x  , we have the fixed points 
1

e , 
3

e  and 
1

e , 
2

e , respectively. 

(b) Suppose that 
1 2 3

0x x x  . Then from the system (14), one has 

  

  

  

2 3

3 1

1 2

1 1 0,5 1 ,

1 1 0,5 1 ,

1 1 1 .

x x

x x

x x

   

  


  

                                                                   (15) 

The second equation of (15) we get  

  1 3
1 1 0,5 1x x         3 1 3

0,5 1x x x   . 

Last equation it follows that 
1

0x   and 
3

0x  , this contradicts to 
1 2 3

0x x x  . 

Consequently, we have that   2Fix intW S  . 

(iii) To find the type of fixed point of the SCSO (12), we rewrite it in the form 

    

    
1 1 2 1 2

2 2 1 1 2

1 0,5 1 1 ,

1 0,5 1 1 .

x x x x x

x x x x x

      

     

                                                       (16) 

where     1 2
, , : , 0, 0 1x x x y x y x y      and 

1 2
,x x  are the first two coordinates of a point lying 

in the simplex 2S . 

The Jacobian of the operator (16) at a fixed point 
1

e  has the following eigenvalues 
1

0  , 
2

0,5  , 

at the 
2

e  has the following eigenvalues 
1

1,5  , 
2

2   and at the 
3

e  has the following eigenvalues 
1

2  , 

2
0  . Therefore, it follow that the fixed point 

1
e  is a attracting point, 

2
e  is a repelling fixed point and the 

fixed point 
3

e  is a saddle point. 

The theorem is proved.                                                                                                                         

The set of limit points. Let  0 2Sx  be the initial point. Then the trajectory of  0
x  is denote by 

  
0

n

n
x  and is defined as     1n n

W


x x  where 0,1,2,n   . 

  

  

  

1 1 2 3

2 2 3 1

3 3 1 2

1 0,5 1 ,

: 1 0,5 1 ,

1 1 .

x x x x

W x x x x

x x x x

   

   


   

 

Theorem 1. For the SCSO W  (12), the following assertions true: 

(i) If  

 

0

2,3
x , then   0

3
lim n

n
W


x e , 

(ii) If  

 

0

1,2
x , then 

  0

1
lim n

n
W


x e , 

(iii) If  

 

0

1,3
x , then   0

1
lim n

n
W


x e , 

(iv) If  0 2int Sx , then 
  0

1
lim n

n
W


x e , 

Proof: (i) Let 
        

0 0 0

2 3 2,3
0, ,x x x . By Theorem 1, the face 

 2,3
  is an invariant set and the 

vertexes 
2

e  and 
3

e  are fixed points belonging to this face. For the SCSO W  (12) is true 
 
1

0
n

x  , 

0,1,2,n   at the face 
 2,3

 . The restriction of the SCSO W  (12) on the face 
 2,3

  has the form 
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 

 

2 2 3

3 3 2

1 0,5 ,

1 .

x x x

x x x

  

  

                                                  (17) 

From the first equation of (17), one has 
        1

2 2 3 2
1 0,5 , 0,1,2,... .

n n n n
x x x x n


     Therefore, it follows that there exists the  

2 2
lim

n

n
x x


 . 

Moreover, from the second equation of (17), one has         1

3 3 2 3
1 , 0,1,2,... .

n n n n
x x x x n


     Therefore, it 

follows that there exists the  
3 3

lim
n

n
x x


 . So there is the limit     0

2 3
lim 0, ,n

n
W x x  


 x x . Since 

x  should 

be a fixed we get 
3

 x e . That is, if  0

3
0x   then we have that   0

3
lim n

n
W


x e  for any  

   0

22,3
\ x e . 

Let  

 

0

1,2
x . By Theorem 1, the face 

 1,2
  is an invariant set and the vertexes 

1
e  and 

2
e  are fixed 

points belonging to this face. The restriction of the SCSO W  (12) on the face 
 1,2

  has the form 

 

 

1 1 2

2 2 1

1 0,5 ,

1 .

x x x

x x x

  

  

                                                   (18) 

Not that, for the SCSO W  (18) is true  
3

0,
n

x   0,1,2,...n   at the face 
 1,2

 . From the first equation 

of (25), one has         1

1 1 2 1
1 0,5 , 0,1,2,... .

n n n n
x x x x n


     Therefore, it follows that there exists the 

 
1 1

lim
n

n
x x


 . Moreover, from the second equation of (25), one has         1

2 2 1 2
1 , 0,1,2,... .

n n n n
x x x x n


     

So we have that there exists the ( )

2 2
lim n

n
x x


 . Hence there is the limit     0

1 2
lim , ,0n

n
W x x  


 x x . Since 

x  

should be a fixed point we get 
1

 x e  . That is, if 
 0

1
0x   then we have that   0

1
lim n

n
W


x e  for any 

 

   0

21,2
\ x e . 

Let         

0 0 0

1 3 1,3
,0,x x x . By Theorem 1, the face 

 1,3
  is an invariant set and the vertexes 

1
e  and 

3
e  are fixed points belonging to this face. For the SCSO W  (12) is true 

 
2

0
n

x  , 0,1,2,n   at the face 

 1,3
 . The restriction of the SCSO W  (12) on the face 

 1,3
  has the form 

 

 

1 1 3

3 3 1

1 ,

1 .

x x x

x x x

  

  

                                                  (19) 

From the first equation of (19), one has         1

1 1 3 3
1 , 0,1,2,... .

n n n n
x x x x n


     Therefore, it follows 

that there exists the  
1 1

lim
n

n
x x


 . Moreover, from the second equation of (19), one has 

        1

3 3 1 3
1 , 0,1,2,... .

n n n n
x x x x n


     Therefore, it follows that there exists the  

3 3
lim

n

n
x x


 . So there is 

the limit     0

1 3
lim ,0,n

n
W x x  


 x x . Since 

x  should be a fixed we get 
1

 x e . That is, if 
 0

1
0x   then we 

have that   0

1
lim n

n
W


x e  for any  

   0

31,3
\ x e . 

Let 
 0 2int Sx . Then, from the first equation of operator (12), one 

has
           1

1 1 2 3 1
1 0,5 1 , 0,1,2,... .

n n n n n
x x x x x n


      So we have that there exists the  

1 1
lim

n

n
x x


 . 

Moreover, from the third equation of operator (12), one has 
           1

2 2 3 1 2
1 0,5 1 , 0,1,2,... .

n n n n n
x x x x x n


      Therefore, it follows that there exists the  

2 2
lim

n

n
x x


 . 

Thus, using      
1 2 3

1
n n n

x x x    we have  
3 3

lim
n

n
x x


 . So there is the limit 

    0

1 2 3
lim , ,n

n
W x x x   


 x x . 

Since 


x  should be a fixed point we get 
1

 x e . 

Consequently, we have that 
  0

1
lim n

n
W


x e  for any 

 0 2int Sx . 

The theorem is proved.                                                                       
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Abstract. In this paper, we investigate an inverse problem for a one-dimensional pseudoparabolic 

integro-differential equation supplemented with an additional condition. First, the corresponding direct 

problem is examined. Using the Fourier method, the direct problem is reduced to an equivalent integral 

equation. Then, by applying Grönwall-type inequalities, an estimate for the solution in terms of the norms of 

the unknown functions is derived. Stability estimates are also obtained. The inverse problem is likewise 

reduced to an equivalent integral equation. For this integral equation, the Banach fixed-point (contraction 

mapping) principle is employed. As a result, the existence and uniqueness of the solution are established. 

Keywords: pseudoparabolic equation, Fourier method, inverse problem, integral equation, Banach 

fixed point theorem. 

 

YADRO PSEVDO-INTEGRO-DIFFERENSIAL TENGLAMASINI ANIQLASHNING 

TESKARI MUAMMOSI 

 

Annotatsiya. Ushbu maqolada bir o‘lchamli psevdo-parabolik integro-differensial tenglama uchun 

qo‘shimcha berilgan shart ostida qo‘yilgan teskari masala o‘rganiladi. Avvalo, to‘g'ri masala ko‘rib 

chiqiladi. Masala Furye usulidan foydalangan holda ekvivalent integral tenglamaga keltiriladi. So‘ngra 

Gronualla tengsizligi yordamida masalaning yechimi noma’lum funksiyalar normasi orqali baholanadi. 

Turg'unlik baholari ham olinadi. Teskari masala ham ekvivalent integral tenglamaga keltiriladi. Ushbu 

integral tenglama uchun Banaxning qisqartirib akslantirishlar prinsipi qo‘llaniladi. Natijada yechimning 

mavjudligi va yagonaligi isbotlanadi.  

Kalit so‘zlar: psevdo-parabolik tenglama, Furye usuli, teskari masala, integral tenglama, Banaxning 

qisqartirib akslantirish teoremasi. 

 

ОБРАТНАЯ ЗАДАЧА ОПРЕДЕЛЕНИЯ ЯДРА ПСЕВДОИНТЕГРО-

ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 

 

Аннотация. В данной работе исследуется обратная задача для одномерного 

псевдопараболического интегро-дифференциального уравнения с дополнительным условием. Сначала 

рассматривается соответствующая прямая задача. С использованием метода Фурье прямая задача 

сводится к эквивалентному интегральному уравнению. Далее, применяя неравенства типа 

Гронуолла, получена оценка решения через нормы неизвестных функций. Также устанавливаются 

оценки устойчивости. Обратная задача аналогичным образом сводится к эквивалентному 

интегральному уравнению. Для этого интегрального уравнения применяется принцип сжимающих 

отображений Банаха. В результате доказываются существование и единственность решения. 

Ключевые слова: псевдопараболическое уравнение, метод Фурье, обратная задача, 

интегральное уравнение, теорема о сжимающем отображении в банаховом пространстве (теорема 

Банаха о неподвижной точке). 

 

Introduction. Inverse problems for partial differential equations are understood as the problems of 

finding unknown coefficients, as well as initial and non-local boundary conditions and solutions of 

differential equations given the solution of a direct problem. Inverse problems are a dynamically developing 

area of modern mathematics [1], [2]. The constitutive relations for a linear nonhomogeneous heat 

propagation and diffusion processes in a medium with memory contain a time- and space-dependent kernel 

in an integral term of time variable convolution type [7]-[12], Interest in equations with mixed derivatives, 

and in particular in pseudoparabolic equations in recent years, is driven by the needs of mechanics, applied 

sciences, and mathematics itself. The study of processes such as fluid filtration in fractured porous media, the 

mailto:h.b.elmurodova@buxdu.uz
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movement of groundwater with a free surface in multilayered media, the transport of moisture, heat, and salts 

in porous media, and other similar practically significant problems requires the investigation of third-order 

boundary value problems for pseudoparabolic equations [3],[15],[16]. Therefore, scientific research in this 

direction is of interest to both mathematical scientists and engineers. The present work is part of this 

direction, in which the characteristics of the medium are expressed through the determination of a function, 

that is, the inverse problem is studied. 

In this work, [6], [13], [14] the method of separation of variables is employed to obtain the classical 

solution of the direct problem in the form of a biorthogonal series in terms of eigenfunctions and associated 

functions. The direct problem is considered as an initial–boundary value problem. 

The direct problem is reduced to equivalent integral equations using the Fourier method. To establish 

the corresponding integral inequalities, the theorems of the Gronwall inequality are applied. We obtain an a 

priori estimate of the solution in terms of an unknown coefficient, which is essential for the study of the 

inverse problem. 

The inverse problem is reduced to a Volterra integral equation of the second kind. Based on the unique 

solvability of this equation in the class of continuous functions, theorems on the unique solvability of the 

direct and inverse problems are proved. A stability estimate is also obtained. 

Setting up the problem.   Let  be a rectangle domain. In this 

present paper, we consider the following inverse problem of determining a pair of functions , 

which satisfy the non-linear 1D pseudoparabolic equation.  

  (1) 

 with the initial condition  

  (2) 

 the Dirichlet boundary condition  

  (3) 

 and the overdetermination condition  

  (4) 

 where  are given functions. 

The problem of determining  

                                                                     

from (1)-(3) with given  and  is called the direct problem for a 1D pseudoparabolic 

integrodifferential equation, where  and the space  denotes the set of 

functions defined on the domain  that are twice continuously differentiable with respect to the spatial 

variable  and once continuously differentiable with respect to the temporal variable . 

Inverse problem: Given the initial data  and , to find the pair of functions , 

satisfying to (1)-(4). 

Definition 2.1. The pair of the functions  is called a classical solution to the inverse 

problem, if  

  

and satisfying each of the system (1)-(4) at every point of the corresponding domain. 

Everywhere in this paper, we require the following conditions for known functions: 

A1) ; 

A2)  

Results and Discussion. To obtain a solution to problem (1)-(3), we formally apply the Fourier 

method. We will look for a nontrivial particular solution to this problem in the form . 

Substituting it into the equation (1) and boundary conditions (3), we obtain a problem spectiral for  :  

 

  (5) 

  

  (6) 

  

  (7) 
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  (8) 

  

  (9) 

  

      (10) 

The solution of the problem (5)-(7) has a Riesz basis in , (for more details, the reader can 

consult [4], [5], [6]) consisting of eigenfunctions and associated functions  

 

  (11) 

 

and eigenvalues  

  

The biorthogonal sequence to  of eigenfunctions and associated functions corresponding to the 

problem adjoint to problem (5)-(7): 

 

  (12) 

 

  also forms a Riesz basis. 

By applying the Fourier method, the solution  of the problem (1)-(3) can be expanded in a 

uniformly convergent series in term eigenfunctions of (11) in  of the form 

 

  (13) 

 

The coefficients  for  are to be found by making use of the orthogonality 

of the eigenfunctions. Namely, we multiply (1) by the eigenfunctions of (11) and integrate over . Recall 

that the inner product in  is defined by . Let us note the expansion 

coefficient  in the eigenfunctions of (12) for  respectively by. 

 

  (14) 

 We obtain in view of (1) and , can get  

  (15) 

For  in view of (1) we have  

  (16) 

We get with (1) and , , can be written as 

 

  (17) 

where  

  (18) 

The problem (15) is equivalent C[0, T] to the Volterra integral equation:  

  (19) 

Solution to the problem (16) have the form:  
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  (20) 

 

For the problem (17), we obtain the equivalent integral equation: 

 

  

 

  (21) 

 

For each fixed , equation (19) and (21) are Volterra integral equations of the second kind with 

respect to ,  and . According to the general theory of integral equations, each of them has a 

unique solution. The solution can be found, for example, by the method of successive approximations. It is 

easy to see that  then . 

Lemma 3.1. Let . The following estimates are valid with large  and for all :  

  (22) 

  

  (23) 

  

  (24) 

  

  (25) 

 

                                         (26) 

      

    (27) 

 

  

 

 (28) 

 

Proof.  Easy to see that  for all  and . From (19), one can 

obtain the following estimates (bounds) for the function . 

  

From here, by the Gronwall inequality, we get the estimate (22). Calculating the derivative  by 

the formula (19), we easily obtain the estimate . From this fact and (20) one can obtain estimates for 

:  

  

Hence, by the Gronwall inequality, we get the estimate (24). 
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By applying formula (20), we derive the expressions for  and , and consequently 

obtain estimates (25) and (26). Next, we estimate (21) and derive the following inequality for :  

  

 

 
From here, by the Gronwall inequality, we get the estimate (27). According to (21), (24), (25) and 

(27): 

 

  

 

  

From the last equation we get (28). 

Lemma 3.1 has been proved.                                                                            

Proposition. [4] For all , we have , where , .  

We show the smooth approximation of the series denoted by (13), . 

Formally termwise differentiating the series in formula (13), we get the following series:  

  (29) 

  

  

 

  (30) 

 

  

 

  (31) 

 

The series (13), (29)-(31) due to the estimates (22)-(28) respectively for any  are majorized 

by the convergent series 

 

  (32) 

 

 

  (33) 

where . 

Let us state the following lemma, ensuring that the following assertion holds for all the series  

 
Lemma 3.2. Let  and us assume that the conditions  is  satisfied. Then, the series (32) 

and (33) converge. 

Proof. We examine each series as follows: 
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                                                                (34) 

 
 

 
 

 
 

                                                 (35) 

 

Similarly to the above, we obtain the following estimates: 

 

 
 

                                            (36) 

   

                    (37) 

 

where  

 

 

 
They are the Fourier coefficients with respect to the systems 

. Using the inequality  and after simple performing, 

according to (34) and (36) we obtain the following: 

 
  

since  

 
Similarly  
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that is  

                                                 

The relations (34)-(37) imply the convergence of the series (32),(33). Therefore, the series (13), (29)-

(31) converge uniformly. 

Thus, we have proved the following assertion. 

Theorem 3.1. If functions  and  satisfy conditions of Lemma 3.2, then problem (1)-(3) has a 

unique solution, which represents the sum of series (13), whose coefficients obey formulas (19),(20),(21).                                                                                                 

                                                                                                               

Plugging (19), (20), (21) into (13), we obtain:  

 
 

 

 

                                                         (38) 

Let  be a solution of (15), (16), (17) with  and . In this regard, from 

(19),(20), (21) the difference’s  will estimate in norm as follows, then by the 

Gronwall lemma for all  and , we have:  

  

 

                                         (39) 

     

      (40) 

  

  

 

  (41) 

  

 

 
 

  

 

  (42) 
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        (43) 

  

 

 
 

                                     (44) 

 

 
 

 
 

 
 

                        (45)  

Indeed, the expressions (39)-(45) are stability estimates for the solutions to the problem (15)-(17).  

Solvability of the inverse problem. In this section, we investigate the inverse problem of determining 

functions  from relations (1)-(4). To solve this problem, we will use the contraction mapping 

principle. 

Let  

                         

Putting  into (13) and in view of (4), we have  

 

   (46) 

 

Substituting the right (19), (20), (21) instead of  in (46) and then differentiating 

two times, after simple transformations, we obtain an integral equation with respect to , that is,  
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               (47) 

where  

 
 

 
Equation (47) may be written as an operator equation  

 

                                                                                     (48)               

     

 where the map  is defined by  

 
 

 
 

 
 

                                                              (49) 

 

To prove that the operator  admits a unique fixed point, start by showing that  maps a certain closed 

convex set into itself, in the space . Fix a number  and consider the ball  

  

is stable by the operator , that is, . 

Theorem 4.1. Let the functions  and  satisfy conditions of A1), A2). Then exists a number 

 such that there exists a unique solution  of the inverse problem (1)-(4).  

Let us first prove that for an enough small  the operator  maps the ball  implies that 

 Indeed, for any continuous function  the function  calculated using 

formula (47) will be continuous. Moreover, estimating the norm of the differences, we find that 
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  (50) 

 

Here we have used the estimates (22)-(28). Note that the function occurring on the right-hand side in 

this inequality is monotone increasing with , and the fact that the function  belongs to the ball 

 implies the inequality  

  (51) 

Therefore, we only strengthen the inequality if we replace  in this inequality with the expression 

 Performing these replacements, we obtain 

 

 
 

 
 

 
 

 
Let  be a positive root of the equation  

  

 

 

 

  

 

  

Then for  we have  

Now consider two functions  and  belonging to the ball  and estimate the distance 

between their images  and  in the space  Composing the difference  

with the help of equations  and , then estimating its norm, we 

obtain  
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Let  Then using inequality (22)-(28) and the estimate (39)-(45) 

with we will drive the next inequality for :  

 
 

 
 

 

 
 

  

 

  

 

 

 
 

  

 

  

 

  

 

  

 

  (52) 

 

The functions  and  belong to the ball , and hence for each of these functions one 

has inequality (51) is valid. Note that the function on the right-hand side in inequality (52) at the factor  
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is monotone increasing with  and . Consequently, replacing  and  in inequality (52) with 

 will only strengthen the inequality. This, we have  

  

 

  

 

  

 

  

 

  

 

  (55) 

 

Let  be a positive root of the equation 

 

  

 

  

 

  

 

  

 

  

 

  

Conclusion. Then for  we have that the distance between the functions  and 

 in the function space C[0,T] is not greater than distance between  and  multiplied by 

. Consequently, if we choose  then the operator  is a contraction in the ball 

; i.e., there exists a unique solution of equation (46). Theorem 4.1 is proven. 
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UO‘K 51 

 

KASR TARTIBLI TO‘LQIN TARQALISH TENGLAMASI UCHUN ARALASH  MASALA 

 

G‘iyosova Farangis Ulug‘bek qizi, 

Qarshi davlat universiteti magistranti 

 

Annotatsiya. Ushbu maqolada kasr tartibli to‘lqin tarqalish tenglamasi uchun 1-aralash masala 

qaralgan. Bu aralash masalaning yechimining mavjudligi va yagonaligi haqidagi teorema isbotlangan. Bu 

masalani yechishda matematik fizikaning keng tarqalgan usullaridan biri Furye metodi yordamida 

yechilgan. 

Kalit so‘zlar: kasr tartibli hosila va integral, aralash masala, Furye metodi, Caputo ma’nosidagi kasr 

tartibli hosila. 

 

СМЕШАННАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ РАСПРОСТРАНЕНИЯ ВОЛН ДРОБНОГО 

ПОРЯДКА 

 

Аннотация. В статье рассматривается смешанная задача 1 для уравнения распространения 

волн дробного порядка. Доказана теорема о существовании и единственности решения этой 

смешанной задачи. Один из распространённых методов математической физики при решении этой 

задачи решается с помощью метода Фурье. 

Ключевые слова: дробная производная и интеграл, смешанная задача, метод Фурье, дробная 

производная Капуто. 

 

MIXED PROBLEM FOR THE FRACTIONAL-ORDER WAVE PROPAGATION EQUATION 

 

Abstract. This article considers mixed problem 1 for the fractional-order wave propagation equation. 

The theorem on the existence and uniqueness of a solution to this mixed problem is proved. This problem 

was solved using one of the common methods in mathematical physics, the Fourier method. 

Keywords: fractional derivative and integral, mixed problem, Fourier method, fractional derivative in 

the sense of Caputo. 

 

Kirish. Kasr hosilalarini o‘z ichiga olgan differensial tenglamalarning simmetriya xususiyatlarini 

o‘rganish hozirgi vaqtda anomal kinetikaga ega bo‘lgan turli jarayonlarning matematik modellari kabi 

tenglamalarning tobora keng qo‘llanilishi bilan bog`liq holda dolzarb muammo hisoblanadi. Bundan 

tashqari,  klassik butun tartibli hosiladan farqli o‘laroq, kasr tartibli hosilalarning  bir xil bo‘lmagan ko‘plab 

ta`riflari mavjud, bu turli xil kasr tartibli differensial tenglamalarga olib keladi. Ular shaklida bir-biriga 

yaqin, lekin xususiyatlari jihatidan sezilarli darajada farq qiladi.Funksiyaga nisbatan funksiyaning kasr 

hosilalaridan foydalanib, umuman olganda, o‘zgaruvchilarning mumkin bo‘lgan almashtirishlar sinfini 

kengaytirishga imkon beradi. Ularni ekvivalentlik o‘zgarishlarining yangi turli sifatida ko‘rib chiqadi. Kasr 

tartibli xususiy hosilali differensial tenglamalar bilan ko‘pgina matematik olimlar ilmiy izlanishlar olib 

borgan. Bu soha XVIII asr boshlarida paydo bo‘lib, o‘sha davrda J.Fure, J.Liuvill, B.Rimanlar tomonidan 

kiritilgan. Kasr tartibli xususiy hosilali differensial tenglamalar fizika, biologiya meditsina, iqtisodiyot va 

moliya , kompyuter fanlari va suniy intellekt sohalarida keng tatbiq etiladi. 

Asosiy qism. Aytaylik,   2,D x t R  ,  0 ,0x l t T     sohada 

     2, , ,t xxD u x t a u x t f x t   ,   0 ,0x l t T          (1)  

Kaputo ma`nosidagi kasr tartibli tenglamaning 

   ,0u x x                0 x l                                                              (2)  

boshlang`ich shartni va quyidagi 

 0, 0u t                      0 t T                                                              (3) 

 , 0u l t                       0 t T                                                             (4) 
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chegaraviy  shartlarni qanoatlantiruvchi yechimini toppish masalasini qaraylik , bu yerda  x , 

 ,f x t - berigan funksiyalar,  a -   o‘zgarmas son ,  T - fiksirlangan son, tD
 orqali Kaputo ma`nosidagi  

 -tartibli kasr tartibli hosila belgilangan. 

Ta’rif. Agar      , 0, 0,u x t C l T   va   ,f x t  funksiyalar uchun  

 ,tD u x t
,      , 0, 0,xxu x t C l T   xossalarga ega bo‘lib, (1)-(4) ning barcha shartlarini qanoatlantirsa, u 

holda bu  ,u x t  funksiya (1)-(4) masalaning yechimi deyiladi. 

Teorema . Aytaylik,  x   2 0,C l  va bo‘lakli-uzluksiz hosilaga ega, hamda     0 0l   , 

' '(0) ( ) 0l      shartni qanoatlantiruvchi funksiya bo‘lsin. U holda (1)-(4) aralash masalaning  

yechimi mavjud va u quyidagicha ko‘rinishga ega: 

 
2

,1

1

, sinn

n

na n
u x t E t x

l l





 






  
       
  

     
2 2

1

,1 ,

1 0

sin

t

n n

n

na na n
E t t E t f d x

l l l

 

  

  
    






       
                        
   

Isbot. Teoremani isbotlash uchun xususiy hosilali tenglamalarni yechishda keng tarqalgan usullardan 

biri o‘zgaruvchilarni ajratish, ya`ni Furye metodidan foydalanamiz. (1)-(4) masalaning yechimini quyidagi 

ko‘rinishda izlaymiz, 

     , , ,u x t v x t w x t   

bu yerda   ,v x t  funksiya 

    

2( , ) ( , ) 0

( ,0) ( ), 0

(0, t) ( , ) 0, 0

t xx
D v x t a v x t

v x x x l

v v l t t T





 


  
    

                                           (5) 

masalaning,     ,w x t    funksiya esa 

2( , ) ( , ) ( , )

( ,0) ( ), 0

(0, ) ( , ) 0, 0

t xx
D w x t a w x t f x t

w x x x l

w t w l t t T





 


  
    

                                              (6) 

masalaning yechimi. 

(1)-(4) masalani yechish uchun yuqoridagi ikkita yordamchi masalani yechish yetarli. Bunda (1)-(4) 

masalani bir jinsli va bir jinsli bo‘lmagan ikki hol uchun alohida-alohida yechib olamiz (5) masalani yechish 

uchun Furye usulidan foydalanamiz. Yechimni 

     , 0v x t T t X x                                                       (7) 

Ko‘rinishda izlaymiz, bunda   X x - faqat  x  o‘zgaruvchining funksiyasi,   T t -esa faqat t  

o‘zgaruvchining funksiyasidir. (7) ni  (5) tenglamaga olib borib qo‘yamiz 

       2 ''tD T t X x a T t X x                                                  (8) 

 

 

 

 2

''tD T t X x

a T t X x



                                                                   (9) 

tenglikni hosil qilamiz, (9) ko‘rinishdagi funksiya (8) tenglamaning  yechimi bo‘lishi uchun (9) 

ayniyatdan iborat bo‘lishi kerak, ya`ni  0<t<T erkli o‘zgaruvchining barcha qiymatlarida o‘rinli bo‘lishi shart 

bo‘ladi. (9) tenglikning chap tomoni faqat t o‘zgaruvchiga, o‘ng tomoni faqat x o‘zgaruvchiga bog`liq. Agar 

biz x o‘zgaruvchining biror qismini tanlab t  o‘zgaruvchini o‘zgartirsak (9) tenglikning o‘ng qismi va 

aksincha t  o‘zgaruvchining biror qismini tanlab  x  o‘zgaruvchini o‘zgartirsak (9) tenglikning chap qismi 
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o‘zgarmas bo‘ladi.Ushbu tenglik  faqat tenglikning ikkala tomoni ham o‘zgarmas songa teng bo‘lgandagina 

o‘rinli bo‘ladi. Demak, quyidagi tenglik o‘rinli bo‘ladi: 

 

 

 

 2

''tD T t X x

a T t X x



                                                           (10) 

bu yerda   -o‘zgarmas bo‘lib, uning ishorasi haqida hech qanday talab qo‘yilmagani uchun keyingi 

hisoblar qulay bo‘lishi uchun minus ishora bilan olamiz. 

(10) tenglikdan   X x  va   T t  noldan farqli funksiyalarni aniqlash uchun 

   2 0tD T t a T t                                                          (11) 

   '' 0X x X x                                                           (12) 

oddiy differensial tenglamalarga kelamiz. 

Chegaraviy shartlardan foydalanib quyidagi tenglikka ega bo‘lamiz, 

     0, 0 0v t T t X   

     , 0v l t T t X l   

tengliklarga ega bo‘lamiz. Bundan esa,  T t  noldan farqli funksiya bo‘lganligi uchun   X x  

funksiya uchun 

   0 0X X l   

qo‘shimcha shartlar qanoatlantirilishi kelib chiqadi. 

Shunday qilib,  X x  funksiyani aniqlash uchun xos qiymat haqidagi soda masalani hosil qilamiz:     

parametrning shunday qiymatlarini topish kerakki natijada 

   

   

'' 0

0 0

X x X x

X X l

 


 

                                                  (13) 

masala  notrival yechimga ega bo‘lsin.      parametrning bunday qiymatlariga xos son, unga mos 

notrivial yechimga esa berilgan masalaning  xos funksiyasi deb ataladi. Ushbu keltirilgan xos son va xos 

funksiyasi masalasiga Shturm- Liuvill masalasi ham deyiladi.    parametrning manfiy, nol va musbat 

bo‘lgan hollari qarab chiqiladi.  <0  va  =0 bo‘lgan hollarda    0X x   yechimga ega bo‘ladi. Xos 

funksiya noldan farqli yechimga ega bo‘lmaydi. Bizga nol yechim kerak emas. Shu sababli   >0 bo‘lgan 

holni qaraymiz. Bu holda (13) sistemaning yechimi quyidagicha aniqlanadi. 

  1 2cos sinX x c x c x    

Chegaraviy shartlarga ko‘ra 

  10 0X c   

  2 sin 0X l c l   

2c 0  demak,  sin 0l    bundan    

2
n

l




 
  
 

   ekanligi kelib chiqadi, bu yerda n=1,2,3…..       

chunki     va    l    musbat sonlar. Demak, berilgan masala notrivial yechimga  

2

n

n

l


 

 
   

 
 xos 

qiymatlardagina ega va u quyidagicha bo‘ladi 

  sinn n

n
X x c x

l


  

Ixtiyoriy o‘zgarmas koeffitsientni  1nc    deb tanlab olsak yechim 

  sinn

n
X x x

l


  

ko‘rinishda  bo‘ladi. 
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Endi esa, 

2

n

n

l




 
  
 

  xos qiymatga mos xos funksiyani  nT t  lar uchun quyidagi ifodalarni 

topamiz: 

   
1

, sinn

n

n
v x t T t x

l





                                                   (14) 

(14) ifodani (5) masalaga olib borib qo‘ysak, quyidagi tenglik hosil bo‘ladi: 

   
2

2

1 1

sin sin 0t n n

n n

n n n
D T t x a T t x

l l l

    

 

 
  

 
   

Bundan esa 

   
2

2

1

sin 0t n n

n

n n
D T t a T t x

l l

  



  
   

   
  

tenglikni hosil qilamiz. Shunday qilib, biz quyidagi masalaga kelamiz: 

   

 

2

2 0

0

t n n

n n

n
D T t a T t

l

T

 



  
   

 
 

                                                                 (15) 

(15)   Kaputo ma`nosidagi kasr tartibli chiziqli differensial tenglama uchun Koshi masalasining 

yechimiga asosan quyidagicha bo‘ladi: 

 
2

,1n n

na
T t E t

l








  
      

                                                              (16) 

Xususiy yechimlar yig`indisi yana yechim bo‘lganligi sababli 

     
1

, n n

n

v x t T t X x




  

funksiya ham yechim bo‘ladi.Shunday qilib (5) masalaning formal yechimi 

 
2

,1

1

, sinn

n

na n
v x t E t x

l l





 






  
      
                                                 (17) 

ko‘rinishda bo‘ladi. 

Endi bir jinsli bo‘lmagan holni qarab chiqamiz. (6) masalani yechish uchun ham Furye usulidan 

foydalanamiz, ya`ni  ,w x t  funksiyani 

   
1

, sinn

n

n
w x t T t x

l





  

ko‘rinishda izlaymiz. Uni (6) tenglamaga olib borib qo‘yamiz: 

     
2

1 1

sin sin ,t n n

n n

n na n
D T t x T t x f x t

l l l

    

 

 
  
 

   

   
1

, sinn

n

n
f x t f t x

l





       ga teng ekanligidan 

     
2

1 1

sin sint n n n

n n

na n n
D T t T t x f t x

l l l

    

 

  
      

   

tenglikni hosil qilamiz.   Bundan 

     
2

t n n n

na
D T t T t f t

l

  
  
 

 

ekanligi kelib chiqadi. Boshlang`ich shartni hisobga olsak quyidagi 
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     

 

2

0

t n n n

n n

na
D T t T t f t

l

T

 



  
   
 

 

                                                                     (18) 

masalaga kelamiz.  (18) masalaning yechimi Kaputo ma`nosidagi kasr tartibli chiziqli differensial 

tenglama yechimi kabi bo‘ladi, ya`ni 

       
2 2

1

,1 ,

0

t

n n n

na na
T t E t t E t f d

l l

 

  

 
    

      
                    

 .               (19) 

Shunday qilib, (6) masala quyidagi formal yechimga 

ega:        
2 2

1

,1 ,

1 0

, sin

t

n n

n

na na n
w x t E t t E t f d x

l l l

 

  

  
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Yechimlarni umumlashtirib, (1)-(4) masala uchun quyidagi yechimga ega bo‘lamiz: 
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Xulosa. Ushbu aralash masalani yechishda quyidagi natijalarga kelindi: 

Teorema. Aytaylik,  x   2 0,C l  va bo‘lakli-uzluksiz hosilaga ega, hamda     0 0l    

' '(0) ( ) 0l     shartni qanoatlantiruvchi funksiya bo‘lsin. U holda (1)-(4) aralash masalaning yechimi 

mavjud va u quyidagicha ko‘rinishga ega: 
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Annotatsiya. Maqolada neft qudug'ini chuqur joylashgan shtangli nasoslar yordamida ishlatishda 

suyuqlik qovushoq-elastik xususiyatlarining quduqdagi gidrodinamik bosimga ta’siri qaralgan. Jarayonning 

matematik modeli tuzilib, uni ifodalovchi matematik masala Furye va Laplas almashtirishi usullari bilan 

yechilgan. Olingan formulalar asosida, neft relaksatsiya xususiyatlarining plunjerga bo‘lgan gidrodinamik 

bosimga ta’siri o‘rganilgan. Agar dastlabki momentda plunjer tezligi keskin o‘zgarsa, bosimning o‘zgarishi 

impulsli xususiyatga ega bo‘lishi mumkinligi ko‘rsatilgan. Aniqlanganki, suyuqlikning qovushoq elastik 

xususiyatlari gidrodinamik bosim maksimumining “kechikishiga” olib keladi, ushbu xususiyatlar oshgani 

sayin, qovushoq va qovushoq-elastik suyuqliklar uchun bosim qiymatlari farqi ortadi.  

Kalit so‘zlar: plunjer, gidrodinamik bosim, qovuhoq-elastik suyuqlik, relaksatsiya parametrlari, 

shtangli nasos, Furye usuli, Laplas almashtirishi. 
 

ГИДРОДИНАМИЧЕСКОЕ ДАВЛЕНИЕ ПРИ ЭКСПЛУАТАЦИИ НЕФТЯНЫХ 

СКВАЖИН ШТАНГОВЫМИ НАСОСАМИ 
 

Аннотация. В статье рассматривается влияние вязкоупругих свойств жидкости на 

гидродинамическое давление нефти при эксплуатации нефтяной скважины глубинными 

штанговыми насосами. Построена математическая модель процесса и решена представляющая её 

математическая задача с использованием методов преобразований Фурье и Лапласа. На основе 

полученных формул исследовано влияние релаксационных свойств нефти на гидродинамическое 

давление на плунжер. Установлено, что при резком изменении скорости плунжера в начальный 

момент, изменение давления может иметь импульсный характер. Показано, что вязкоупругие 

свойства жидкости приводят к «запаздыванию» достижения максимума гидродинамического 

давления, причём с ростом этих свойств разница в значениях давления для вязких и вязкоупругих 

жидкостей увеличивается.  

Ключевые слова: плунжер, гидродинамическое давление, вязкоупругая жидкость, параметры 

релаксации, штанговый насос, метод Фурье, преобразование Лапласа. 
 

HYDRODYNAMIC PRESSURE DURING OIL WELL OPERATION WITH SUCKER  

ROD PUMPS 
 

Abstract. The article discusses the influence of viscoelastic fluid properties on the hydrodynamic 

pressure of oil during wellbore operation using sucker rod pumps. A mathematical model of the process is 

constructed, and the corresponding mathematical problem is solved using Fourier and Laplace transform 

methods. Using the resulting formulas, the influence of the relaxation properties of oil on the hydrodynamic 

pressure on the plunger is studied. It is established that with a sharp change in plunger velocity at the initial 

moment, the pressure change can be impulsive. It is shown that the viscoelastic properties of the fluid lead to 

a "delay" in reaching the maximum hydrodynamic pressure, and that as these properties increase, the 

difference in pressure values for viscous and viscoelastic fluids increases. 
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Keywords: plunger, hydrodynamic pressure, viscoelastic fluid, relaxation parameters, rod pump, 

Fourier method, Laplace transform. 
 

Kirish. Neft quduqlarini shtangali nasoslar bilan ishlatishda, plunjerga ko‘taruvchi trubalardagi 

suyuqlik ustuni tufayli hosil bo‘ladigan bosim ta’sir qiladi. Plunjer yuqoriga qarab harakat qilganda, 

shtanglar osilgan nuqta harakatlana boshlagan paytdan boshlab, plunjer suyuqlikning og’rlik yukini ko‘tara 

boshlaydi. Ushbu yuk ta’sirida shtanglar cho‘zilib, bu ularning ishdan chiqishiga olib kelishi mumkin.  

Plunjerning tezligi o‘zgaruvchan bo‘lgani uchun, chuqurlikdagi quduq nasosining  silinri va shtanglar 

orasidagi  halqasimon maydonida suyuqlik harakati nostatsionar bo‘ladi. U plunjer ustidagi bosimda aks 

etadi.  Mazkur maqolada, plunjer yuqoriga qarab harakatlanishi paytida unga bo‘lgan gidrodinamik bosimga 

neft qovushoq-elastik xususiyatlarining ta'siri nazariy jihatdan o‘rganilgan. 

Eksperimental tadqiqotlar ko‘rsatadiki, tarkibida asfalten-smola moddalar  bo‘lgan neftlar relaksatsiya  

xususiyatiga ega va ular qovushoq-elastik  suyuqliklar hisoblanadi [1-2]. Neft quduqlari ishlashining ko‘plab 

muhim ko‘rsatkichlari va texnologik uskunalarning ishlashi neftning reologik xususiyatlariga bog'liq. 

Qovushoq-elastik  neftning reologik xususiyatlari gidrodinamik jarayonlarga sezilarli ta'sir ko‘rsatadi, 

shuning uchun neft konlarini o‘zlashtirish va quduqni ishlatishda ularni hisobga olish zarur [3]. Neftni  qazib 

olish har xil turdagi nasos agregatlari yordamida amalga oshiriladi. Ulardan eng keng tarqalgani chuqur 

joylashgan shtangli nasoslardir. Ushbu agregatlar bilan ishlash tajribasi ulardan katta chuqurlikdagi o‘rta va 

yuqori oqimli quduqlarda samarali foydalanish mumkinligini ko‘rsatadi. Turli geologik va fizik sharoitlarda 

ularning ishonchliligi neft qazib olish ko‘rsatkichlarini ko‘p jihatdan aniqlaydi. Shtangli plunjerli nasoslar 

yordamida neft quduqlarini ishlatishda matematik modellashtirish masalalari [4-5] da qaralgan. [4] da 

murakkab sharoitlarda ishlaydigan plunjerli nasosning matematik modeli taklif qilingan. [5] da yuqori 

qovushoqli neftni chiqarish uchun pnevmatik kompensatorga ega shtangli blokning matematik modeli ishlab 

chiqilgan, quduq bo‘ylab gidrodinamik bosimni barqarorlashtirish tahlil qilingan.  

Shtangli nasoslar yordamida quduqni ishlatish jarayonida neft qovushoq-elastik  xossalarining 

gidrodinamik bosimga ta’sirini o‘rganish alohida qiziqish uyg‘otadi. Chuqur quduq nasosining shtanglari va 

silindri orasidagi halqasimon maydonda suyuqlikning nostatsionar harakati masalalari [6-9] da qaralgan. [6] 

da ikkita doiraviy truba orasidagi halqasimon boʻshliq tekis boʻshliq sifatida modellashtirilgan va neft 

qovushoq Nyuton suyuqligi deb qaralgan. Masala taqribiy usulda yechilgan. Bu masalaning aniq yechimi 

qovushoq suyuqlik va  qovushoq-elastik  Maksvell suyuqligi uchun [7, 8] da keltirilgan. Biroq, ko‘taruvchi 

truba va shtanglar orasidagi halqali bo‘shliqni tekis bo‘shliq sifatida modellashtirish olingan formulalarni 

amalda qo‘llashni cheklaydi. Yuqorida aytilgan farazdan foydalanmagan holda masala qovushoq va  

Maksvell qovushoq-elastik  suyuqligigi uchun [9] da qaralgan.   

Biroq, qovushoq-elastik  neftlar qazib olinadigan quduqlarni ishlatish jarayonda gidrodinamik bosimni 

hisoblashda nafaqat kuchlanishning relaksatsiyasi vaqti, balki tezlikning kechikishi vaqtini ham hisobga 

olish zarur.  

Masalaning qo‘yilishi. Ko‘taruvchi truba va shtanglar orasidagi halqasimon oraliqda plunjerga 

neftning gidrodinamik bosimini aniqlash masalasini qaraymiz. 1-rasmda chuqur quduq nasosining tipik 

konfiguratsiyasi, 2-rasmda qo‘zg’almas sistemaga nisbatan ko‘taruvchi truba va shtanglar orasidagi halqali 

bo‘shliqda suyuqlik tezligining taqsimlanishi ko‘rsatilgan.   

 
1-rasm. Shtangali nasos tizimining                               2-rasm. Qo‘zg’almas sistemaga nisbatan 

             konfiguratsiyasi                                                  ko‘taruvchi truba va shtanglar orasidagi 

                                                                                         halqali bo‘shliqda suyuqlik tezligining 

                                                                                         taqsimlanishi.   plunjer tezligi 
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Jarayonni matematik modellashtirish uchun suyuqlik va trubalarga nisbatan umumiy qabul  qilingan 

farazlardan foydalanamiz: ko‘taruvchi trubaning yuzasida suyuqlikning nisbiy tezligi nolga teng; 

harakatlanuvchi truba(lar) yuzasida esa u truba tezligiga teng; oqimning silliqligi saqlanadi; suyuqlik 

siqilmas; boshlang’ich va oxirgi effektlar e’tiborga olinmaydi.  

Plunjerga umumiy bosim )(tp  quyidagicha bo‘ladi: 

,)()()( 0phLgtptp  
                                                

(1)
  
 

bu yerda t - vaqt;  )(tp ko‘taruvchi trubada suyuqlikning nostatsionar harakati paytida 

gidrodinamik bosim (bosim o‘zgarishi); 0p quduq og’zidagi bosim; L suyuqlikning ko‘tarilgan 

ustunining balandligi; h   

nasosining cho‘mish chuqurligi;  neftning zichligi; g erkin tushish tezlashishi, ./81.9 2smg   

Suyuqlikning nostatsionar laminar oqimdagi ),( trv tezligi, doiraviy simmetriyani hisobga olgan 

holda, quyidagi tenglamadan aniqlanadi 

                                    ),(,
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)( 2 Rrrr
rr

tq
t

v





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


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bu yerda R radial koordinata; r ko‘taruvchi trubaning radiusi; 2r shtanglar radiusi; 

Lpzptq //)(   ko‘taruvchi trubaning o‘qi bo‘ylab trubaning L  uzunlikdagi qismiga mos bosim 

o‘zgarishi;   urinma kuchlanish.  

(1) ni quiyidagicha yozish mumkin:  

.)()()( 0phLgtLqtp    

 Suyuqlikning reologik tenglamasini quyidagicha olamiz: 
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bu yerda  dinamik qovushoqlik; 1 - kuchlanishning relaksatsiya vaqti; 2 tezlikning kechikish 

vaqti. 

(3) tenglama da Oldroydning qovushoq-elastik suyuqlik modelini ifodalaydi 

( 21   ). Nol boshlang'ich shartda siljish kuchlanishi uchun (3) tenglamaning yechimi quyidagicha:  
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(4) ni (1) ga qo‘yib, suyuqlik tezligi uchun  tenglama hosil qilamiz:  
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(1) va  (3) dan foydalanib, suyuqlik tezligi uchun bitta differensial tenglama hosil qilish mumkin:   
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Dastlabki vaqtda suyuqlik harakatlanmaydi, shuning uchun (7) uchun boshlang’ich shartlar  

    .,00,,00, 2

' Rrrrvrv t                         (7) 

bo‘ladi. Qabul qilingan farazlarga muvofiq, (7) tenglama uchun chegaraviy shartlar 

).0(,0),(),(),( 2  ttRvtvtrv p                                  (8) 

bo‘ladi, bu yerda  )(tv p plunjerning harakat tezligi. Gidrodinamik bosimni aniqlashda qo‘shimcha 

shart sifatida suyuqlik oqimi balansi tenglamasidan foydalanamiz: 

   ,),(2)()(
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2

1 drtrvrtvrrQ

R

r

p                       (9) 

bu yerda 1r plunjer radiusi, Q suyuqlik sarfi . 

(1)-(9) munosabatlar qaralayotgan jarayonning matematik modelini ifodalaydi. 

Masalani yechish usuli.  Quyidagi o‘lchamsiz miqdorlarni kiritamiz: 
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bu yerda 0U  tezlikning biror xarakterli qiymati.  Unda, o‘lchamsiz miqdorlarda quyidagilarni 

olamiz:  
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Masalani yechish jarayonida, yozuvlar qulay bo‘lishi uchun, o‘lchamsiz miqdorlar ustidagi "-" belgini 

hozircha qo‘ymay yozamiz. Ya’ni quyidagicha: 
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(120 ni   ga ko‘paytirib, ]1,[  oraliqda integrallab, (13) dan foydalanib, quyidagini olamiz:  
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(17) ni (12) ga qo‘yib, suyuqlik tezligi uchun quyidagi tenglamalarni hosil qilamiz: 
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Bu tenglamani Furyening o‘zgaruvchilarni almashtirish usuli bilan yechamiz. Buning uchun 

  deb  olamiz.  (15) ga mos birjinsli tenglama uchun, nol chegaraviy shartlarda, quyidagi 

Bessel tenglamasi uchun Shturm-Liuvvil masalasini hosil qilamiz: 
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0  
(16) masalaning xos qiymati. Unga mos )(0 rz xos funksiyani (13) ni hisobga olgan holda -

quyidagi ko‘rinishda topish topish:  
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Izlanayotgan noma'lum funksiyalarni quyidagicha ifodalaymiz 

                                      
),,(),(),( 10 trvtrvtrv                                                         (18) 

),()()( 10 tqtqtq                                                         (19) 

bu yerda )()(),( 00 tvrztrv p   (15) tenglamaga mos bir jinsli tenglamaning nol boshlang'ich va 

chegaraviy shartlardagi yechimi. )(0 tq  funksiya (14) ga ),(0 trv  ni qo‘yib aniqlanadi : 
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tenglamalarning  

);1(,0)0,(,0)0,( 11  rrvrv t     ).0(,0),1(),(),( 11  ttvtvtv p        (22) 

),(
4

1
),(

2

1

1

tvdrtrvr p






                                                       (23) 

shartlarni qanoatlantiruchi yechimi. Bu yerda  (23) tenglik (13) ni hisobga olgan holda (15) dan kelib 

chiqadi. 

    (21)-(23) masalani  Laplas integral almashtirishi yordamida yechamiz[10]: 
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Boshlang’ich shartlarni  hisobga olib, Laplas tasvirida  
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 tenglamani olamiz. Uning uchun chegaraviy shartlar quyidagi ko‘rinishni oladi:  

   ,0),1(~),(~),0(~
11  svsvsv p

                                                       (25) 

bu yerda    (23) tenglik Laplas tasvirida quyidagi ko‘rinishni oladi:  
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(24) tenglamaning umumiy yechimi quyidagicha yozish mumkin:  
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bu  )(),( 00 xYxJ  - nolinchi tartibli birinchi va ikkinchi turdagi Bessel funksiyalari.  1C , 2C  

o‘zgarmaslarni (25) shartdan topib, quyidagini hosil qilamiz: 
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)(),( 11 xYxJ  - birinchi tartibli birinchi va ikkinchi tur Bessel funktsiyalari.  

(28) tasvirda  Laplas originaliga o‘tib, quyidagi formulani hosil qilamiz: 
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tenglamaning musbat ildizlari;    
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Xususiy holda, (42) dan   da  qovushoq suyuqlik uchun  
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formulani hosil qilish mumkin. Gidrodinamik bosimni   
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formuladan, plunjerga umumiy bosimni (31) ni (1) formulaga qo‘yib aniqlanadi.  

Natijalar va muhokamalar. Olingan formulalar yordamida plunjerning yuqoriga ko‘tarilishida neft 

qovushoq-elastik xususiyatlarning gidrodinamik bosimga ta'sirini o‘rganish mumkin. Ulardan ko‘rsatadiki, 

dastlabki momentda plunjer tezligi keskin o‘zgarsa(lahzali tezlanish): ),()( 0 tUtv p  tezlanishning ta'siri  

kuchli bo‘lishi mumkin, chunki ),()(' 0 tUtv p   bu yerda )(t  Hevisidning birlik funktsiyasi, 

)(t Dirakning delta funktsiyasi. Vaqtning biror orasida plunger tezligi o‘zgarmas bo‘lsin: 

,)( constvtv mp  ya'ni. .1)( tv p  
U holda (29) va (30) dan  

  tceсс
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4
)( 12
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Re

4
)( A

tq   

Ko‘rinadiki, tezlik  o‘zgarmas bo‘lgan vaqt oralig'ida gidrodinamik bosim faqat qovushoq suyuqlik 

uchun o‘zgarmas bo‘lib, qovushoq-elastik  suyuqlik uchun o‘zgarmas bo‘lmaydi. 
Shtanglar va trubalarning bo‘ylama tebranishlari e'tiborga olinmasa, plunjer tezligini shtang osilgan 

nuqtaning tezligiga teng deb qarash mumkin. Bunday holda plunjer harakatining bir sikli davri uchun uning 

tezligini quyidagicha olish taklif qilingan [6]: 
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                  (32) 

bu yerda mv  shtang osilgan nuqtaning o‘rtacha tezligi;  T plunjer harakatining bitta sikli davri. 

Suyuqlik qovushoq-elastik xossalarining plunjer ko‘tarilishi paytidagi gidrodinamik bosim 

o‘zgarishiga ta'sirini o‘rganish uchun parametrlarning quyidagi qiymatlarida sonli tajribalar o‘tkazildi: 
 

,100,1000 mhmL   ,/60.00 smvU m 
 

,10 5

0 Pap    

,20sТ 
  

,01.02 mr 
 

,02988,01 mr  .030.0 mR     
 

3-rasmda neft qovushoqligi va zichligining ,09.0 sPa   3/920 mkg  qiymatlari va relaksatsiya 

parametrlarining  

;01 21   ;5.0;12 21 ss   ;1;23 21 ss  
 

  

qiymatlari uchun gidrodinamik bosimning vaqtga bog'liq ravishda o‘zgarishi grafiklari keltirilgan. 

Rasmdan ko‘rinadki, plunjerning ko‘tarilish tezligining oshishi jarayonida qovushoq-elastik  suyuqlik 

uchun gidrodinamik bosim qovushoq suyuqlikka qaraganda qaraganda kichik bo‘ladi. U tezlik kamayishida, 

aksincha, katta bo‘ladi. Ko‘tarilishning boshida va oxirida bosim o‘zgarishining sakrashi sodir bo‘ladi. 

Buning sababi shuki, qaralayotgan holda boshlang’ich tezlanish noldan farqli. Boshlang’ich sakrashning 

bo‘lmasligi sharti - tezlikning dastlabki momentan boshlab silliq o‘zgarishi, ya'ni boshlang’ich tezlanishning 

nolga tengligidir. 

 
 

3-rasm. Neft relaksatsiya parametrlarining ba’zi qiymatlarida plunjerga bo‘lgan gidrodinamik 

bosimning o‘zgarishi grafiklari 

 
;01 21                 

 
 

  
  

4-rasmlarda neft qovushoqligi va zichligining  3/900,100.0 mkgsPa    qiymatlarida 

plunjerga suyuqlik umumiy bosimining vaqt bo‘yicha o‘zgarishi grafiklari keltirilgan. 

Grafiklardan ko‘rinadiki, neftning qovushoq-elastik xususiyatlari plunjerga gidrodinamik bosimining 

pasayishiga (tezlanish vaqtida) va ortishiga (sekinlashuv vaqtida) olib keladi. Qiymatlardagi eng katta farq  

ko‘tarilishning to‘xtashi momentida kuzatiladi. Relaksatsion xususiyatlar bosim maksimumining 

kechikishiga olib keladi.  Bu xususiyatlarining oshishi bilan bosim rejimlaridagi farq, ayniqsa, ko‘tarilish 

sekinlashuvi momentida ortadi. Sonli tajribalar ko‘rsatadiki, neft ftning qovushoqligi va zichligi oshishi bilan 

gidrodinamik bosim ham ortadi. Bunda bosim profillarining shakli va qovushoq-elastik xususiyatlar 

ta'sirining tabiati o‘zgarmaydi, ammo ta'sir darajasi ortadi. Bu, ayniqsa, tezlashish va tormozlash vaqtida 

seziladi. 

Plunjer tezligi oshgandagi gidrodinamik bosimning o‘zgarishga doir hisoblashlar ko‘rsatadiki, plunjer 

tezligi oshishi gidrodinamik bosim ma'lum vaqtgacha ortadi va keyin kamayadi. Bu bosim nyuton qovushoq 

suyuqligi uchun qovushoq-elastik suyuqlikka qaraganda kamroq. Shunday qilib, qovushoq-elastik neftlarni 

ishlab chiqaradigan neft quduqlarini chuqur joylashgan shtangli nasoslar yordamida ishlatishda neftning 

relaksatsion xususiyatlarini hisobga olish zarur.  
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4-rasm. Neft relaksatsiya parametrlarining plunjerga umumiy bosimga ta’siri 

 .  

a.    

       b.     

Xulosa. Neft qudug'ini chuqurda joylashgan shtangli nasoslar yordamida ishlatishda suyuqlik 

qovushoq-elastik xususiyatlarining plunjerga gidrodinamik bosimining matematik modeli tuzilib, uni 

ifodalovchi matematik masala Furye usuli va Laplas almashtirishidan foydalanib yechilgan. Neft qovushoq-

elastik xususiyatlarini plunjerga gidrodinamik bosimga ta'sirini nazariy jihatdan o‘rganishga imkon beruvchi 

formulalar olingan. Olingan formulalar va sonli tajribalar asosida, neft relaksatsiya xususiyatlarining 

plunjerga bo‘lgan gidrodinamik bosimga ta'siri o‘rganilgan. Aniqlanganki, agar dastlabki momentda plunjer 

tezligi keskin o‘zgarsa, bosimning o‘zgarishi impulsli xususiyatga ega bo‘lishi mumkin. Plunjer tezligi 

o‘zharmas bo‘lgan vaqt oralig'ida gidrodinamik bosim faqat Nyuton suyuqligi uchun o‘zgarmas, qovushoq-

elastik  suyuqlik uchun esa o‘zgaruvchan bo‘lishi ko‘rsatilgan. Neftning qovushoq-elastik xususiyatlari 

plunjerga gidrodinamik bosim maksimumining “kechikishiga” olib kelishi, bu xususiyatlar oshgani sayin, 

qovushoq va  qovushoq-elastik  suyuqliklar uchun bosim qiymatlari farqi ortadi. O‘tkazilgan sonli tajribalar -

shuni ko‘rsatadiki, qovushoq-elastik neftlar ishlab chiqaruvchi quduqlarni shtangli nasoslar yordamida 

ishlatishda suyuqlikning relaksatsion xususiyatlarini hisobga olish zarur.   
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Annotasiya. Ushbu maqola differensial tenglamalar va matematik fiziki ixstisosligi bo‘yicha tadqiqot 

olib boruvchi ilmiy izlanuvchilar uchun mo‘ljallangan.  Maqolada tekislikdagi Laplas tenglamasi uchun 

Koshi masalasi qaralgan. G soha chegarasi ∂G ning bir qismi S silliq chiziqda berilgan qiymatlariga koʻra, 

Laplas tenglamasi uchun Koshi masalasi yechimini davom ettirishi konskruksiyasi qaralgan. 

Kalit soʻzlar: Laplas tenglamasi, Koshi masalasi, nokorrekt masalalar, Karleman funksiyasi, 

regulyarizasiya, davom ettirish formulalalari.  

 

ФУНКЦИЯ КАРЛЕМАНА ЗАДАЧИ КОШИ ДЛЯ УРАВНЕНИЯ ЛАПЛАСА 

 

Аннотация: Статья предназначена для исследователей, проводящих исследования в области 

дифференциальных уравнений и математической физики. В статье рассматривается задача Коши 

для уравнения Лапласа на плоскости. Рассматривается построение границы области G ∂G на 

гладкой линии S по заданным значениям, являющееся продолжением решения задачи Коши для 

уравнения Лапласа.  

Ключевые слова: уравнение Лапласа, Задача Коши, некорректные задачи, функция Карлемана, 

регуляризация, формулы продолжения.  

 

CARLEMAN FUNCTION OF THE CAUCHY PROBLEM FOR THE LAPLACE EQUATION 

 

Abstract. This article is intended for researchers conducting research in the fields of differential 

equations and mathematical physics. It considers the Cauchy problem for the Laplace equation in the plane. 

It considers constructing the boundary of a domain G on a smooth line ∂G given values of  S, which is an 

extension of the solution to the Cauchy problem for the Laplace equation.  

Keywords: Laplace’s equation, Cauchy problem, ill-posed problems, Carleman function, 

regularization, continuation formulas. 

 

Kirish. Matematik fizikaning nokorrekt masalalarni yechimlar sinfini kompaktga qadar toraytirilsa, bu 

masala turg‘un bo‘lishiga doir birinchi natijalar A.N.Tixonov ishlarida keltirilgan. Laplas tenglamasi uchun 

Koshi masalasining Karleman funksiyasi tushunchasi M.M.Lavrent’yev tomonidan kiritilgan [2]. 

Tekislikdagi yo‘lak ko‘rinishidagi cheksiz sohada Laplas tenglamasi uchun Koshi masalasining 

regulyarizatsiyasi V.K.Ivanov tomonidan o‘rganilgan [3]. Ko‘p o‘lchamli fazoda soha chegarasining bir 

qismi konus bo‘lganda Laplas va Gelmgols tenglamalari uchun Koshi masalasining yechimi 

Sh.Yarmuxamedov tomonidan Karleman funksiyasini qurish asosida olingan  [4]. 

1. Masalaning qo‘yilishi. 
2R  tekislikda yarim birlik aylana yoyi hamda S  silliq chiziq bilan 

chegaralangan D  sohani qaraymiz. Bunda koordinata boshi sohadan tashqarida joylashgan deb olamiz.  

 1 2,  x x x D   va  1 2,  y y y D   bo‘lsin. Qaralayotgan D  sohada  

 
² ²

0 
² ²

U U

x x

 
 

 ₁ ₂
 (1) 

Laplas tenglamasi yechimi        2 1

1 2,U x U x x C D C D    garmonik funksiyaning 

Koshi berilganlari  S da berilgan: 
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    
 

 0 1|     ,      S

S

U x
U x f x f x

n


 


 (2) 

bu yerda  0 f x  va  1f x  - berilgan funksiyalar. (2) shartlarga ko‘ra  U x  funksiyani D  sohada 

topish masalasi qaraladi. 

2. Karleman funksiyasi qurish sxemasi. (1) – (2) masala yechimini topishda Karleman funksiyasi 

metodidan foydalanamiz. [2] ga ko‘ra Laplas tenglamasining Karleman funksiyasi ta’rifini keltiramiz: 

Ta’rif. S  to‘plamning D  sohaga nisbatan Karleman funksiyasi deb ikkita  x va  y nuqtalarga 

hamda   musbat sonli parametrga bogʻliq boʻlgan, quyidagi ikki shartlarni qanoatlantiruvchi  , ,G x y   

funksiyaga aytiladi: 

    
1

1)  , , ln , , ,G x y g x y
x y

  


 (3) 

bu yerda  , ,g x y 
 
funksiya y  oʻzgaruvchi boʻyicha D  sohada garmonik funksiya; 

  
 

 
/

, ,
2) , ,  ; 

D S

G x y
G x y ds

n


  



 
  

 
  (4) 

bunda     funksiya    da nolga intiladi. 

Bu ta’rifda  , ,g x y   funksiya Karleman funksiyasining regulyar qismi deyiladi. 

Yuqorida berilgan ta’rifdagi Karleman funksiyasining regulyar qismini  

  
11 1

1 1
, , ln cos , 

N

n

g x y N n
n




 

 
    

 
  (5) 

ko‘rinishda olamiz, bu yerda Karleman funksiyasining parametri   sifatida N  natural son olindi va 

2 2
1

1 1

;     ;   ;    arctg  ;     arctg  .
x y

x y
x y

             

Teorema.    
1

  , , ln , ,G x y N g x y N
r

   funksiya qaralayotgan D  sohada S  yoyi uchun 

Laplas tenglamasining Karleman funksiyasi bo‘ladi. 

Teoremani isbotlashdan oldin quyidagi lemmani isbotlaymiz. 

Lemma. (5) tenglik bilan aniqlangan    , ,  g x y N funksiya D  sohada y  o‘zgaruvchi bo‘yicha 

garmonik funksiya bo‘ladi. 

Isbot.  , ,g x y N  funksiyani y  o‘zgaruvchi bo‘yicha Laplas tenglamasini qanoatlantirishini 

ko‘rsatamiz ya’ni: 

  
11 1

1 1 cos
Δ , , Δ ln Δ .

N
n

y y y n
n

n
g x y N

n




 

 
    

 
  

1

1
ln


 – Laplas tenglamasining fundamental yechimligidan 

1

1
Δ ln 0y


 .  

Qatordagi laplasian ichidagi funksiyani 
*

1

cos
  

n

n
g




 belgilaymiz. 

*Δg  hisoblash uchun Laplas tenglamasini qutb koordinatalar ko‘rinishidan  

  
1 1 1

* 2 * * *

1 1 1Δ , g g g g          
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foydalanib, tegishli hosilalarni hisoblaymiz: 

  
1 1 1

* 1 * 2

1 1cos ;  1 cos ;n ng n n g n n n            

 
* * 2

1 1sin ;   cos .n ng n n g n n          

    * 2 2

1 1 1 1Δ ,  cos cos cos 0.n n ng n n n n n n n                

  Δ , , 0.y g x y N   

(5) funksiyaning y  o‘zgaruvchi bo‘yicha garmonikligi isbotlandi. 

Isbotlangan lemmadan  , ,  G x y N funksiya Laplas tenglamasining Karleman funksiyasining 1) 

shartini qanoatlantirishi kelib chiqadi. Endi  , ,  G x y N funksiya ta’rifni 2) shartini qanoatlantirishini 

ko‘rsatish uchun  

  
 

/

, ,
, , ,  y

D S

G x y N
G x y N ds x D

n


 
  

 
  

integralni baholaymiz.  

Bu yerda  
11 1

1 1 1
, , ln ln cos ,  

N

n

G x y N n r x y
r n




 

 
     

 
   

 , ,G x y N  funksiyaning qator ko‘rinishidagi ifodasini topish uchun  x y ifodada  ix e  , 

1

iy e  ,      va 

1





  almashtirishlar olib 

 
2

1 1 2 cosr        

ko‘rinishda yozib olamiz. Ushbu  

 
2

1

1 1
ln ln ln 1 2 cos  

r
  


     (6) 

tenglikdagi 
2ln 1 2 cos       ifodani kompleks o‘zgaruvchili  ln 1 z  funksiya 

iz e   almashtirishdan so‘ng haqiqiy qismidan quyidagi 

 
2

1

ln 1 2 cos cos  
n

n

n
n


   





     (7) 

tenglikni hosil qilamiz. (6) va (7) dan  

 

11 1

1 1 1
ln ln cos  

n

n

n
r n




 





 
   

 
  (8) 

tenglikni olamiz. (8) tenglikdan  

 

1 11 1 1

1 1 1 1
cos ln ln cos  

n n
N

n N n

n n
n r n

 
 

  



  

   
     

   
   (9) 

ga kelamiz. 

Karleman  , ,G x y N  funksiyasing regulyar qismi sifatida  

  
11 1

1 1
, , ln cos

n
N

n

g x y N n
n




 

 
    

 
  
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funksiyani olamiz. Demak  , ,G x y N  funksiyani 

  
1 1

1
, , cos

n

n N

G x y N n
n








 

 
  

 
  

ko‘rinishda yozish mumkin.  

Oxirgi tenglikning o‘ng tomonidagi qatorni ,   /x D y D S   uchun baholaymiz: 

  

1

/
1 1

1

1
, , cos

n

D S
n N

G x y N n
n











 



 
  

 
  

  
1

1 2

1

1 . 
1

n N
N

n N n

 
  






 

     


  (10) 

Xuddi shunga o‘xshash G  funksiyani /y D S  nuqtadagi normal bo‘yicha hosilasini 

baholaymiz: 

 

1 1

1
1/ 1 11 1

cos
n

n
n ND S

G G
n

n
 




 




   

 
   

 
  

 

1

1 1

cos . 
1

N
n n

n N n N

n


  


 

   

   


   (11) 

Shunday qilib,  

  
  1

/

, , 4
, , . 

1

N

y

D S

G x y N
G x y N ds

n









 
  

  
  (12) 

(12) tengsizlikning o‘ng tomonidagi ifoda 0 1   bo‘lgani uchun  N   da 

1

2
1

N









 

nolga intiladi. 

Grin formulasiga ko‘ra (1), (2) masala yechimi uchun 

  
 

 

1
ln

1 1
ln        

2
D

U y rU x U y dS x D
r n n



 
 

     
 

 
 

  (13) 

integral tasvir o‘rinli.  

 , ,g x y N  funksiya y  o‘zgaruvchi bo‘yicha D  sohada garmonikligidan x D  uchun Grin 

formulasiga ko‘ra 

  
 

 
 , ,

, , y

y yD

U y g x y N
g x y N U y dS

n n


  
    

   
  

        , , , , 0y y

D

g x y N U y U y g x y N dy        (14) 

tenglik o‘rinli. Masala shartidagi berilganlarni hisobga olib (13) va (14) tengliklardan  

    
 

 
 

/

, ,
, , y

D S

U y G x y N
U x G x y N U y dS

n n


  
     

  
  
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      
 

1 0

, ,
, , y

S

G x y N
G x y N f y f y dS

n

 
    

 
  

tenglikni hosil qilamiz. Oxirgi tenglikda        2 1

1 2,U x U x x C D C D    hamda (12) 

tengsizlikni hisobga olgan holda N   limitga o‘tib 

        
 

1 1

, ,1
lim , ,

2
y

N
S

G x y N
U x G x y N f y f y dS

n

 
    

 
  

tenglikni olamiz. Teorema isbotlandi. 
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THE CONTROLING PROBLEM FOR THE HEAT EXCHANGE EQUATION IN AN 

INHOMOGENOUS ROD 
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Abtract. The issue of controlling the heat exchange process in a non-homogeneous boom is 

considered. The problem under consideration is put into a non-homogeneous equation of the parabolic type. 

A control function is placed at one end of the boom. The mathematical model of the problem is constructed. 

The existence and uniqueness of its solution is proved. The control function is found. 

Keywords: parabolic equation, Laplace equation, eigenfunction, eigenvalue, initial condition, 

boundary condition. 

 

УПРАВЛЯЮЩАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ТЕПЛООБМЕНА В НЕОДНОРОДНОМ 

СТЕРЖНЕ 

 

Аннотация. Рассматривается задача управления процессом теплообмена в неоднородной 

штанге. Задача описывается неоднородным уравнением параболического типа. Управляющая 

функция помещена на один из концов штанги. Построена математическая модель задачи. Доказано 

существование и единственность её решения. Найдена управляющая функция. 

Ключевые слова: параболическое уравнение, уравнение Лапласа, собственная функция, 

собственное значение, начальное условие, граничное условие. 

 

BIR JINSLI BO‘LMAGAN NOVDADA ISSIQLIK ALMASHISH TENGLAMASINI 

BOSHQARISH MUAMMOSI 

 

Annotatsiya. Bir xil bo'lmagan bumda issiqlik almashinuvi jarayonini nazorat qilish masalasi ko'rib 

chiqiladi. Ko'rib chiqilayotgan masala parabolik tipdagi bir jinsli bo'lmagan tenglamaga qo'yiladi. Bomning 

bir uchida boshqaruv funksiyasi o'rnatilgan. Masalaning matematik modeli tuzilgan. Uning yechimining 

mavjudligi va o'ziga xosligi isbotlangan. Boshqarish funksiyasi topilgan. 

Kalit so‘zlar: parabolik tenglama, laplas tenglamasi, xos funksiya, xos qiymat, boshlang‘ich shart, 

chegaraviy shart. 

 

Introduction. Currently, the development of science and technology provides the opportunity not only 

to study, but also to control many processes. The study of many physical processes comes down to the study 

of differential equations and mathematical physics problems. A simple example of this is the problem of 

maintaining the temperature of a certain area at a certain temperature. 

Literature analysis. Currently, the problems of controlling processes described by partial differential 

equations are being intensively studied. The first to engage in this direction was the French scientist J.L. 

Lions. Later, V. Barbu, A. Rascanu, G. Tessitore, H.O. Fattorini. A.V. Fursikov obtained a number of 

scientific results. Academician Sh. Alimov, who is conducting scientific research in this area, in his articles 

“On a control problem associated with the heat transfer process” (2010) and S. Albeverio, Sh. Alimov, “On a 

time-optimal control problem associated with the heat exchange process” (2008), considered the issue of 

optimal control of the heat exchange process. 

Z.K. Fayozova “Граничное управление процессом теплообмена” (2013) In the article, a governing 

function for the homogeneous heat dissipation equation is found. Y. E. Fayziyev, N. Xalilova “О задача 

управления процессом теплопроводности” (2010) In the article, a governing function for the 

inhomogeneous heat dissipation equation is found. Scientific results [1], [2],[3],[4] given in works. 

Research methodology. The article sets the initial boundary conditions for the inhomogeneous heat 

dissipation equation, as well as the conditions that maintain the average temperature of the rod over time at a 

given state. A control function is set at one end of the inhomogeneous rod, and methods of the spectral 

theory of differential operators and Millen substitution are used to find the function. 
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Analysis and results. In the following area 

   , : 0 ,0D x t t T x l      Let's look at the heat transfer equation and the boundary and 

initial conditions. 

       
( , )

( , ) ( ) ( , ), 0 ; 0;
t

u x t
u x t k x f x t x l t

x x

  
     
  

                       (1) 

     (0, ) ( ), ( , ) 0;u t t u l t                                                                           (2) 

      ( ,0) ( ).u x x                                                                                             (3)  

 here ( )k x  function characterizing the composition of the stergen material, 

( , )f x t  and the function of a heat source or absorber within the stent, 

( )t  heat control function on the edge of the rod, 

( )x - The initial state of the sturgeon. 

 (2) and (3)   from the condition 

 (0,0) (0) (0), ( ,0) ( ) 0u u l l      ,   equal to                                  (4) 

Management function 

 ( )t  We assume that is bounded: 

                                | ( ) |t M  .                                                                       (5) 

Average temperature of sturgeon 

                                  

0

1
( , ) ( )

l

u x t dx b t
l

                                                              (6) 

We define it as (6) which indicates that the average temperature of the rod is maintained at a given 

value over time. 

The problem is posed. ( )b t  Let the function be given. Then it is 

 ( )t  It is necessary to find a control function such that problems (1)-(3) have a unique solution and 

this solution satisfies condition (6) 

In solving this problem, we set the following requirements for the given functions. 
1

0
( ) [0; ], ( ) 0k x C l k x k   , 

Theorem. Let our given functions belong to the following class 

. 
1

0
( ) [0; ], ( ) 0k x C l k x k   ,  0,C l ( , ) [0; ] ( )f x t C l C R


  va 

1[0, ]C  . Then the solution to problem (1)-(4) exists and is unique. 

Proof. To solve problems (1)-(3), we consider the following eigenvalue problem: 

2( )
( ) ( ), (0) ( ) 0n

n n n n

d d x
k x x l

dx dx


   

 
    

 
.                    (7) 

It is known from the course on the spectral theory of differential operators that the eigenvalue problem 

(7) has a solution and that the solutions of this problem are 

  ( )
n

x  system of specific functions 
2
[0; ]L l  forms an orthonormal basis in space, that is: 

0

1, ,
( ) ( )

0, .

l

n m nm

n m
y y dy

n m
  


  


 . 

                     
2

1

( , ; ) ( ) ( )n t

n n

n

G x y t e x y
  






                                     (8) 

 (1)-(3) We express the general solution of the problem using the Green function 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  127 
 

0 0

( , ) ( , )
( , ) ( , ) ( , ; ) ( )

t l

u x t x t G x t k d d
     

     
  

    
      

    
 

0 0 0 0

( , ; ) ( ,0) ( , ; ) ( ; ) ( , ; ) ( )
l t l l

G x t d G x t f d d G x t d                          (9) 

So,       

0

( , ) (0) ( ) ( ,0; )
t

u x t k G x t d   



  

  

  

0 0 0

( , ; ) ( ; ) ( , ; ) ( ) .
t l l

G x t f d d G x t d                                             (10) 

To solve the problem before us, we substitute expression (10) into condition (6). 

               

0 0

1
( ) (0) ( ,0; ) ( )

t l

k G x t dx d b t
l

   


 
   

 
   

0 0 0 0 0

1 1
( , ; ) ( ; ) ( , ; ) ( ) .

t l l l l

G x t f d dx G x t d dx d
l l

         
 

   
 
      

To simplify the above equation, we introduce some notations. 

0 0 0

1 1
( ) (0) ( ,0; ) ( ) ( , ; )

l l

K t k G x t dx k G x t dx
l l



    
 



   
     

   
          

0 0 0

1
( ) ( , ; ) ( ; ) ,

t l l

F t G x t f d dx d
l

     
 

   
 
        

0 0 0

1
( ) ( , ; ) ( ) .

t l l

t G x t d dx d
l

    
 

    
 
    

Then we arrive at the following Volterra equation. 

0

( ) ( ) ( ) ( ) ( )
t

K t d b t F t t                               (11) 

 (11) We use Laplace transform to solve the equation: 

 
0 0 0

( ) ( ) ( ) ( ) ( ) ,
t

pt pte K t d dt e b t F t t dt   
 

  
    

 
    

Here  p a is  - complex number. Then 

)

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )
t

pt p pe K t d dt e d e K d p K p          
  

   
   

 
    . 

 
0

( ) ( ) ( ) ( ) ( ) ( ).pte b t F t t dt b p F p p


       

2

10 0 0

1
( ) ( ) (0) (0) ( ) n

l

pt tpt

n n

n

K p e K t dt k x dx e dt
l

 
 

 



      

               

0 0 0 0

1
( ) ( , ; ) ( ; )

t l l

ptF p e G x t f d dx d dt
l

     


  
   

 
     
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0 0 0 0

1
( ) ( , ; ) ( ) .

t l l

ptp e G x t d dx dtd
l

    


  
    

 
     

So,               
( ) ( ) ( )

( ) .
( )

b p F p p
p

K p


 
                                          (12) 

( 12 ) Performing the Mellin substitution in the equation 

 ( )t  we find the function. 

1 ( ) ( ) ( )
( )

2 ( )

a i

pt

a i

b p F p Ф p
t e dp

i K p




 

 

 
   

( )1 ( ) ( ) ( )
.

2 ( )

a is tb a is F a is Ф a is
e ds

K a is







    


  

The theorem has been proven. 

Theorem. So 

 0M   find that the following conditions 

                                                            2
2

2

( ).w R
b M



  

and (0) (0) 0b b   satisfies. 

Proof. ( )t  We evaluate the function below. 

    2

0

( ) ( ) ( )1 1
( ) ( ) 1 .

2 2( )

b i F i Ф i
t d B i d

CK i

  
    

 

 

 

 
      

2
2

22

1 ( ).
( ) (1 )

w R
B i d C b  







   The condition is reasonable. Therefore 

2
2

21 1

( ).
0 0

( ) 1
2 2w R

C C
t b M

C C


 

    

Here    0

1

2 C
M

C


    is equal. 

The theorem is proved. 

Conclusion. In the considered case, the rod is not homogeneous and a heat source is located inside the 

rod. In this case, to determine the average temperature of the rod, a control function was placed at one end of 

it and found. 

Control function ( ), ( , )k x f x t  It also depends on the functions and they have the following 

condition 

...
1

0
( ) [0; ], ( ) 0k x C l k x k   ,  0,C l ( , ) [0; ] ( )f x t C l C R


   
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Annotatsiya. Ushbu maqolada bog‘liq bo‘lmagan tasodifiy miqdorlar juftligi orqali shakllanadigan 

o‘ng tomondan tasodifiy senzuralangan model hamda unga mos ravishda kuzatiladigan minimumlar va 

senzuralanish indikatorlaridan iborat tanlanma tahlil qilinadi. Senzuralanish taqsimoti informativ 

bo‘lmagan vaziyatda baholashga tegishli parametr uchun Fisher informatsiyasi aniqlanadi va Rao-Kramer 

quyi chegarasining muqobil isboti taqdim etiladi. Keltirilgan isbot senzuralangan kuzatuvlar uchun tuzilgan 

haqiqatga o‘xshashlik funksiyasiga Koshi–Bunyakovskiy tengsizligini to‘g‘ridan-to‘g‘ri qo‘llashga tayanadi, 

bunda tegishli regulyarlik shartlarining bajarilishi talab etiladi. 

Kalit so‘zlar: fisher informatsiyasi, informativ bo‘lmagan senzuralanish modeli, Rao-Kramer quyi 

chegarasi. 

 

НОВЫЙ ВЫВОД ОЦЕНКИ КРАМЕРА–РАО ДЛЯ МОДЕЛИ НЕИНФОРМАТИВНЫХ 

НАБЛЮДЕНИЙ 

 

Аннотация. В данной статье исследуется модель случайная цензурирования справа, 

формируемая парой независимых случайных величин, а также соответствующая выборка, 

состоящая из наблюдаемых минимумов и индикаторов цензурирования. В случае неинформативного 

распределения цензурирования определяется информация Фишера для оцениваемого параметра и 

приводится альтернативное доказательство нижней границы Рао–Крамера. Представленное 

доказательство основано на прямом применении неравенства Коши–Буняковского к функции 

правдоподобия для цензурированной выборки при выполнении необходимых регулярных условий. 

Ключевые слова: информация Фишера, модель неинформативного цензурирования, нижняя 

граница Рао–Крамера. 

 

A NEW DERIVATION OF THE CRAMÉR–RAO BOUND FOR A NONINFORMATIVE 

OBSERVATION MODEL 

 

Abstract. This paper examines a randomly right-censored model generated by a pair of independent 

random variables, along with the corresponding sample consisting of observed minima and censoring 

indicators. Under a noninformative censoring distribution, the Fisher information for the parameter of 

interest is derived, and an alternative proof of the Rao–Cramér lower bound is presented. The proof relies 

on a direct application of the Cauchy–Bunyakovsky inequality to the likelihood function of the censored 

sample, assuming the fulfillment of appropriate regularity conditions. 

Keywords: Fisher information, noninformative censoring model, Rao–Cramér lower bound. 

 

Kirish. Zamonaviy statistik tahlilda parametrlarni baholashning aniqligi va ishonchliligi nazariyasi 

markaziy o‘rin tutadi, ayniqsa, kuzatuvlar to‘liq yoki informativ bo‘lmagan sharoitlarda. Amaliy tajriba 

shuni ko‘rsatadiki, real ma’lumotlarning katta qismi senzuralangan, cheklangan yoki noaniq shaklda 

yig‘iladi, bu esa klassik baholash usullarining samaradorligini keskin pasaytiradi. Shuning uchun bunday 

sharoitlarda Kramér–Rao quyi chegarasini qayta ko‘rib chiqish va uning muqobil isbotlarini ishlab chiqish 

nazariy statistika hamda ishonchlilik tahlili uchun dolzarb masaladir. Noinformativ kuzatuvlar modeli uchun 

Kramér–Rao bahosining yangi isboti parametr bahosining eng yaxshi mumkin bo‘lgan chegarasini aniqroq 

tushunishga yordam beradi va amaliy tadqiqotlarda, jumladan, tibbiyot statistikasi, iqtisodiy modellash, xavf 

tahlili va senzuralangan ma’lumotlar bilan ishlanadigan boshqa ko‘plab sohalarda ahamiyatga ega. 

Parametrlarni baholash nazariyasida Kramér–Rao quyi chegarasi statistik baholarning aniqligini 

baholashda fundamental mezon hisoblanadi. Ammo amaliy tahlillarda, xususan, omonatlik ma’lumotlari, 
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tsenzuralangan kuzatuvlar, ishonchlilik tahlili yoki yashirin jarayonlardan olingan ma’lumotlarda kuzatuvlar 

ko‘pincha informativ bo‘lmaydi yoki parametr haqida to‘liq ma’lumot tashimaydi. Bunday sharoitda klassik 

Kramér–Rao tengsizligini qo‘llash murakkablashadi va yangi yondashuvlar talab etiladi. Shu sababli, 

noinformativ kuzatuvlar modeli uchun Kramér–Rao bahosining alternativ yoki soddalashtirilgan isbotini 

ishlab chiqish nazariy statistika va amaliy ehtimollar nazariyasi uchun dolzarb ahamiyat kasb etadi. Bu 

izlanish statistik baholarning chegaraviy aniqligini to‘g‘ri talqin qilish, yangi baholash usullarini yaratish va 

mavjud metodlarni umumlashtirishda muhim metodologik asos bo‘lib xizmat qiladi. 

Fаrаz qilаmiz,  , A  o`lchоvli fаzоdа аniqlаngаn o`zа’rо bоg`liqsiz   vа   tаsоdifiy 

miqdоrlаrning tаqsimоt funksiyalаri nоmа’lum skаlyar  1s   pаrаmеtr аniqligidа bеrilgаn bo`lsin: 

         1
; , ; ,F x x G x x          . 

Biz bu tаqsimоtlаr аbsоlюt uzluksiz dеb, ulаrning zichlik funksiyalаrini mоs rаvishdа  ;f x   vа 

 ;g x   lаr оrqаli bеlgilаymiz. Stаtistik mоdеl shundаyki, undа  ,   juftlik o`rnigа  ,Z   juftlik 

kuzаtilаdi, bu еrdа  min ,Z    vа  I Z   . Bizni qiziqtirаdigаn   tаsоdifiy miqdоr 

fаqаtginа   , ya’ni 1   bo`lgаndаginа kuzаtilаdi. Аgаr  ,i iX Y  lаr оrqаli  ,   juftliklаrning i  - 

tаjribаdаgi аmаliy qiymаtlаrini bеlgilаsаk, u hоldа tаjribаlаrning n  -qаdаmidа biz 
    , , 1
n

i iZ i n    stаtistik tаnlаnmаni kuzаtаmiz. Bu еrdа  min ,i i iZ X Y  vа 

 i i iI Z X   . Hаr bir  ,i iZ   juftlik   0,1 , , U Y  tаnlаnmа fаzоni yarаtаdi, bu еrdа 

 оrqаli Z  ning qiymаtlаri to`plаmi, U  оrqаli  0A  vа  1B  ko`rinishdаgi to`plаmlаr   -

аlgеbrаsini vа  ,Q  Y =  оrqаli esа  ,v x y  o`lchоvgа nisbаtаn dаminirlаngаn, U  dа 

аniqlаngаn vа  ,Z   juftliklаr yarаtgаn tаqsimоtlаr оilаsini bеlgilаymiz. Bu еrdа A  vа B  lаr  dаgi 

Bоrеl to`plаmlаri,  , ydv x y dx    vа 
y  esа  0,1y  nuqtаdа аniqlаngаn sаnоvchi o`lchоvdir. 

 n
 tаnlаnmаdаgi hаr bir  ,i iZ   juftlikkа 

           
1

, ; ; ; ; ;
y y

k x y f x G x g x F x    


                  (1) 

zichlik funksiyasi mоs kеlаdi vа bu еrdа 1 , 1G G F F    . Quyidаgi bеlgilаshlаrni 

kiritаmiz: 

   
     

 ; ;
; , ;

i i
i i

i i

f x g x
f x g x

 
 

 

 
 

 
, 

   
   
 

   
   
 

; ;
; , ; ,

; ;

i i

i if x g x
x x

f x g x

 
   

 
   

   
     

 ; ;
; , ; ,

i i
i i

i i

F x G x
F x G x

 
 

 

 
 

 
 

   
     

 , ;
, ; , .

i i
i i

i i

k x y d
k x y

d

  
  

 


 


 

 n
 tаnlаnmаdаgi sеnzsurlаngаn vа senzurlаnmаgаn iX  lаrning хissаsini o`rgаnish mаqsаdidа 

quyidаgi subtаqsimоtlаrni аniqlаymiz: 

       * ; , 1 ; ; ,

x

F x Z x G t f t dt   


      
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       * ; , 0 ; ;

x

G x Z x F t g t dt   


     . 

Оsоnginа tеkshirib ko`rish mumkinki,    1
;x     uchun quyidаgi tеngliklаr o`rinlidir: 

       * ; * ; ;F x G x H x Z x      , 

         * ; lim * ; , * , lim * ; 1
x x

F F x G G x      
 

       . 

Endi o`ng tоmоndаn tаsоdifiy senzurlаnishning bir muhim хususiy hоli – “prоpоrsiоnаl intеnsivliklаr 

mоdеli” (PIM) bilаn tаnishib o`tаmiz. 

1-Tа’rif. [6]  ,F G  (yoki  ,  ) juftlik PIMni qаnоаtlаntirаdi dеyilаdi, аgаr shundаy musbаt 

o`zgаrmаs sоn   mаvjud bo`lib, bаrchа 
 1

x  lаr uchun  

    ; ;G x F x


                                         (2) 

munоsаbаt o`rinli bo`lsа. 

 Bа’zidа PIM ni Kоziоl-Griin mоdеli hаm dеb аtаshаdi ([1-6] gа qаrаng). PIM ning eng muhim 

хаrаktеristik хоssаlаridаn biri undа kuzаtilаyotgаn tаnlаnmаdаgi  1,..., nZ Z  vа  1,..., n   tаsоdifiy 

miqdоrlаrning bоg`liqsizligidir. 

1-Tеоrеmа [1,4].  ,F G  juftlikning PIMni qаnоаtlаntirishining zаrur vа yetarli shаrti 

 min ,Z    vа  I Z    tаsоdifiy miqdоrlаrning bоg`liqsizligidаn ibоrаtdir. 

Yuqorida senzurlоvchi tаqsimоt funksiya G  nоmа’lum   pаrаmеtrgа bоg`liq bo`lgаn, ya’ni 

infоrmаtiv mоdеlni qаrаb o`tdik. Endi bu tаqsimоt   gа bоg`liq emаs dеb hisоblаymiz. Bundаy mоdеl 

infоrmаtiv bo`lmаgаn senzurlаnish mоdеli dеb аtаlаdi. Ushbu maqoladа biz Krаmеr-Rао tеngsizligining 

bоshqаcha isbоtini kеltiramiz. 

Dеmаk, fаrаz qilаmiz,   vа   tаsоdifiy miqdоrlаr  ;F x   vа  G x  tаqsimоt funksiyalаri bilаn 

bеrilgаn bo`lib,   -skаlyar pаrаmеtr, 
 1

R   bo`lsin. Kuzаtilаdigаn 

    , , 1
n

i iC Z i n    tаnlаnmаgа mоs kеlgаn birgаlikdаgi zichlik funksiya 

   
1

, ; , ;
n

n i i

i

k x y k Z  


  dа      1
, 0,1x y R   uchun 

         
1

, ; ; ;
y y

k x y f x G x g x F x  


    
   

, 

bo`lib, bu еrdа  
 

 
 ;

; ,
F x dG x

f x g x
x dx





 


.. 

Bu hоldа 
 n

C  mоs Fishеr informatsiyasi    nI nI   bo`lib, bu еrdа  

 
 

   
2

ln ;
;

f x
I G x dF x


 







 
  

 
  

 
   

2

ln ;
;

F x
F x dG x










 
    
 . 

Tаnlаnmа fаzоni 
     

 
1

0,1
n

n
R  
 

Y  оrqаli bеlgilаb оlib, quyidаgi rеgulyarlik shаrtlаrini 

kеltirаmiz: 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  132 
 

(I)’   : 0 ; 1x F x    to`plаm gа bоg`liq emаs. 

(II)’
 ;f x 






 vа 

 ;F x 






 hоsilаlаr mаvjud bo`lib,  

     
 ;

;
f x

G x dF x G x dx



 

 

 




   , 

   
 

 
;

;
F x

F x dG x dG x



 

 

 


 

   , 

   
  

 

2

20

; ; ; ;1
lim ,

; ;n

n n n

n

n n

k x y k x y
d x y

k x y

 




   
  

 
Y

 

 
 

   
2

ln , ;
; ; ,

n

n

n n

k x y
k x y d x y


 



 
  

 
 


Y

 

- tеngliklаr o`rinli. 

(III)’ Bаrchа    uchun  0 I     vа   ning bаhоsi n  uchun 

   
2

0 n nd        . 

2-Tеоrеmа. Аgаr (I)'-(III)' shаrtlаr bаjаrilsа, u hоldа   ning iхtiyoriy siljimаgаn bаhоsi n  uchun 

bаrchа    lаrdа 

   
 

1 1
n nd I

nI
 



  .                                       (3) 

Isbоti.  n   ekаnligidаn, 

 

     , , ; ,
n

n n nx y k x y d x y   
Y

, 

vа  

 

     , , ; ,
n

n n n n nx y k x y d x y       
Y

. 

Bu еrdаn vа bаrchа    uchun 

 

   , ; , 1
n

n n

У

k x y d x y     tеnglikdаn 

 
 

     , ; , ; ,
n

n n n n n nk x y k x y d x y          
 

Y

.             (4) 

Endi (3) dа Kоshi-Bunyakоvskiy tеngsizligini qo`llаsаk, 

 
   

  

 

2

2
, ; , ;

,
, ;n

n n n

n n n

nУ

k x y k x y
d d x y

k x y

 
 



   
     . 

Bu tеngsizlikdа (III)’ shаrtni qo`llаsаk, 
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 
 

 

     

1
2

1
ln , ;

, ; ,
n

n

n n n n

Ó

k x y
d k x y d x y I


   







      
    

 , 

ya’ni (3) kеlib chiqаdi. Tеоrеmа isbоtlаndi. 

Xulosa. Yakuniy natijalar shuni ko‘rsatadiki, noinformativ kuzatuvlar modeli uchun Kramér–Rao quyi 

chegarasining yangi isboti klassik yondashuvning qo‘llanish doirasini kengaytiradi va baholash nazariyasida 

aniqlilik mezonlarini yanada chuqurroq tushunishga yordam beradi [8-10]. Biroq ushbu yo‘nalishda hali bir 

qator ochiq masalalar mavjud, masalan, umumlashtirilgan informativlik o‘lchovlarini ishlab chiqish, 

senzuralangan va yarim-senzuralangan modellar uchun Kramér–Rao tengsizligining yanada boshqa 

variantlarini aniqlash, shuningdek, bog‘liq  kuzatuvlar ostida Kramér–Rao bahosining mavjudligi va 

barqarorligini o‘rganish. Kelgusidagi tadqiqotlar ushbu bo‘shliqlarni to‘ldirishga, noinformativ ma’lumotlar 

uchun optimal baholovchi sinflarini tavsiflashga va amaliy modellashtirishda yanada samarali statistik 

metodlarni ishlab chiqishga qaratilishi mumkin. 
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Abstract. The paper considers the Cauchy problem for the system of partial differential equations of 

fractional order ( , ) ( ) ( , ) = ( , )t U t x D U t x H t x  . Here U and H are vector-functions, the m m  matrix of 

differential operators ( )D  is triangular (elements above or below the diagonal are zero). Operators 

located on the diagonal are elliptic. The main distinctive feature of this system is that the vector-order  

has different components (0,1],j  , and j  are not necessarily rational. Sufficient conditions (in some 

cases they are necessary) on the initial function and the right-hand side of the equation are found to ensure 

the existence of a classical solution. 

Key words: system of fractional vector-order differential equation, matrix symbol, elliptic operators, 

classical solution. 

 

 

ДРОБНЫЕ ПАРАБОЛИЧЕСКИЕ СИСТЕМЫ ВЕКТОРНОГО ПОРЯДКА С ДРОБНОЙ 

ПРОИЗВОДНОЙ РИМАНА-ЛИУВИЛЛЯ 

 

Аннотация. В статье рассматривается задача Коши для системы дифференциальных 

уравнений дробного порядка ( , ) ( ) ( , ) = ( , )t U t x D U t x H t x  , здесь U и H — вектор-функции, а 

матрица дифференциальных операторов размера m m  - ( )D  является треугольной (элементы 

выше или ниже диагонали равны нулю). Операторы, расположенные на диагонали, являются 

эллиптическими. Главной отличительной особенностью этой системы является то, что вектор 

порядка  имеет различные компоненты (0,1],j  , причём j  не обязательно являются 

рациональными. Найдены достаточные (а в некоторых случаях и необходимые) условия на 

начальную функцию и правую часть уравнения, обеспечивающие существование классического 

решения. 

Ключевые слова: система дифференциальных уравнений дробного векторного порядка, символ 

матрицы, эллиптические операторы, классическое решение. 

 

VEKTOR TARTIBLI RIMAN-LIUVILL KASR HOSILALI PARABOLIK TENGLAMALAR 

SISTEMASI  

 

Annotatsiya. Ushbu ishda kasr tartibli xususiy hosilali differensial tenglamalar sistemasi 

( , ) ( ) ( , ) = ( , )t U t x D U t x H t x   uchun Koshi masalasi ko‘rib chiqiladi. Bu yerda U va H — vektor-

funksiyalar, ( )D  matritsa m m  o‘lchamli differensial operatorlardan tashkil topgan uchburchak 

(diagonaldan yuqoridagi yoki pastidagi elementlar nol) matritsa. Diagonalda joylashgan operatorlar 

elliptikdir. Sistemaning asosiy farqli jihati shundaki,  vektor-tartib turli (0,1],j   komponentalarga ega 

va j  lar ratsional bo‘lishi shart emas. Klassik yechimning mavjud bo‘lishini ta’minlash uchun 

boshlang‘ich funksiya va tenglamaning o‘ng tomoniga yetarli (ba’zi hollarda esa zarur) shartlar topilgan. 

Kalit so‘zlar: vektor-tartibli kasr hosilali differensial tenglamalar sistemasi, matritsa simboli, elliptic 

operatorlar, klassik yechim. 

 

Introduction. In the study of differential equation systems, an important problem is to construct 

explicit solution formulas. For systems of ordinary fractional differential equations, such representations are 

relatively easy to obtain (see [1], [2]). 

mailto:ilyosxojasulaymonov@gmail.com


MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  135 
 

S. Umarov recently developed general solution formulas for various fractional systems [3, 4, 5]. In 

particular, [5] presents new results even for classical fractional systems and provides an explicit solution 

representation for the Cauchy problem:  

 ( , ) ( ) ( , ) = ( , ), > 0, ,n

t U t x D U t x H t x t x    

 
1

0

( , ) = ( ), ,lim
n

t
t

U t x x x



   

where ( , ) nt x   , 
1 2= , , , m    , (0,1], =1j j m  , 

,( ) ={ ( )}i jD A D  is a m m  matrix whose 

elements are pseudo-differential operators, 
1 2( ) = ( ), ( ), , ( ) ,mx x x x      

1 2( , ) = ( , ), ( , ), , ( , ) ,mH t x h t x h t x h t x   are a given vector-functions, 1 2( , ) = ( , ), ( , ), , ( , ) ,mU t x u t x u t x u t x   is 

an unknown vector-function and 1 2
1 2( , ) = ( , ), ( , ), , ( , ) ,m

t t t t mU t x u t x u t x u t x
 

      is the fractional order 

derivative of order 0 < 1, =1, ,j j m   in the sense of Riemann-Liouville, which for any continuous 

function :f    is defined as (see, for example [6], p. 71):  

 
0

1 ( )
( ) = , > 0,

(1 ) ( )

t

j

t
j

j

d f
f t d t

dt t








 


  
  

provided that the right side is pointwise defined on 


. 

The components j  of the order vector  are arbitrary real numbers in (0,1] . When all =j  , the 

solution has a simpler form [4], and rational j  reduce to this case. 

In [5], the solution ( , )U t x , initial data ( )x , and source term ( , )H t x  are taken from the class   

of functions with compactly supported Fourier transforms. This ensures transform applicability but limits 

generality due to the narrowness of   and the broad class of operators ( )D . 

The work [7] addresses this by establishing conditions under which classical solutions exist, 

assuming =j  . 

The aim of this work is to establish a solution representation when the vector of fractional derivative 

orders  has arbitrary components (0,1]j  . To this end, we consider a lower triangular matrix of 

differential operators with constant coefficients: 

, =1, , ; =1, , ,( ) ={ ( )} , where ( ) = 0 for > ,i j i m j m i jD A D A D j i  where 
, | |

,

( ) =i j l
i j

A D a D

  , and 

1
=j

j

D
i x




. The matrix-symbol is defined as , =1, , ; =1, , ,( ) ={ ( )} , where ( ) = 0 for > .i j i m j m i jA A j i    

We assume that each diagonal operator , ( )j jA D , =1, ,j m , is a homogeneous elliptic operator of 

the highest order among all , ( )i jA D , i.e.,  , ,> , .j j i jl l i j   

Define:  

 
*

,
1

= { }.max j j
j m

p l
 

 (1) 

 

Recall that a homogeneous differential operator 
| |=

( ) =
l

A D a D

  is called elliptic if its symbol 

| |=
( ) = > 0

l
A a 


   for all \{0}n  . 

Let B  be a Banach space. We define the space = B B B  ( m  times) consisting of vector 

functions 1( ) = ( ), , ( )mx x x    , where ( )j x B  . The norm in B  is given by:  

 2 2 2

1= .B m B   B
 

The space ([0, ]; )TC B  denotes the space of vector-valued functions continuous on [0, ]T  with values in B . 

The object of study in this work is the following problem. 

Initial-Boundary Value Problem. Find functions 2( , ) ( )
q nj

ju t x L , (0, ]t T , =1, ,j m  (note 

that this inclusion is considered as a boundary condition at infinity), such that  

 ( , ) ([0, ] ), ( , ) and ( ) ( , ) ((0, ] ),n n

tU t x T U t x D U t x T    C C  (2) 

 and satisfying the Cauchy problem  
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 ( , ) ( ) ( , ) = ( , ), > 0, ,n

t U t x D U t x H x t t x    (3) 

 
1

0

(0, ) = ( ), ,lim
n

t
t

U x x x



   (4) 

 where ( , )H t x  and ( )x  are given continuous functions. 

The solution to an initial-boundary value problem from class (2) is usually called a classical solution. 

a. Preliminaries. The Fourier transform of a function : nf  , denoted as [ ]( )F f  , is 

defined as follows:   

 ˆ[ ]( ) = ( ) = ( ) , .ix n

n

F f f f x e dx     

The inverse Fourier transform is denote by 1[ ]( )F f x  and is defined by the following integral:  

 
1 1
[ ]( ) = ( ) , .

(2 )

ix n

n

n

F f x f e d x 


    

If ( )f x  is a function that is smooth enough and decays rapidly as | |x  goes to infinity, then the operation of 

the operator ( )A D  on this function can be expressed as:  

 
1

( ) ( ) = ( ) [ ]( ) .
(2 )

ix n

n

n

A D f x A F f e d x  


   

 Therefore for such a function one has  

 [ ( ) ( )]( ) = ( ) [ ]( ).F A D f x A F f    (5) 

The classical Laplace transform is defined by the following integral formula:  

 
0

[ ]( ) = ( ) , .stL f s f t e dt s



   

provided that the function f  (the Laplace original) is absolutely integrable on the semi-axis  . The 

inverse Laplace transform is defined by the following integral formula:  

 
1 1
[ ]( ) = [ ]( ) .

2

sy

ic

L g y e L f s ds
i



  

where = ( , ), >ic sc i c i c     . 

The Laplace transform of the Riemann-Liouville derivative of a function 
1( )f C  , is (see [6], 

p. 84):   

 1
1 1[ , , ]( ) = [ ]( ), , [ ]( ) =m

t m t t mL f f s L f s L f s


        

 
11

1 1
1 1= [ ]( ) ( )(0 ), , [ ]( ) ( )(0 ) ,m m

t m t ms L f s I f s L f s I f
   

       (6) 

 where j

tI


 are Riemann-Liouville fractional derivative and integral, respectively and defined as:  

 
1

0

1 ( )
( ) = , > 0.

(1 ) ( )

t

j

t
j

j

f
I f t d t

t








 


  
  

Recall that the Mittag-Leffler function , ( )E t   is defined as follows:  

 ,

=0

( ) = , > 0, .
( )

k

k

t
E t

k
   

 




 

  

Lemma 1. (see, for example, [6], p. 50) The Laplace transform of the Mittag-Leffler function is as 

follows:  

 1

,

1
[ ( )]( ) = .L t E t s

s

 

  




 


 

The convolution of ( )f t  and ( )g t  is written as " f g " and is defined as follows  

 
0 0

( )( ) = ( ) ( ) = ( ) ( ) .

t t

f g t f g t d f t g d          

Laplace transform of convolution equal to this:  

 [ ]( ) = [ ]( ) [ ]( ).L f g s L f s L g s  (7) 
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Formal solution of Initial-Boundary Value Problem. In this section, following the work of S. Umarov [5], we 

will construct a formal solution to the problem (3)-(4). 

Applying Fourier-Laplace transform to the problem (3)-(4) we get the recurrent equation: 

 1 1
1

1,1

1
[ [ ]]( , ) = [ ]( ),

( )
L F u s F

s A


  


 (8) 

 
1

,

=1, ,

( )[ ]( )
[ [ ]]( , ) = [ [ ]]( , ), = 2, , .

( ) ( )

k
k jk

k j
k k

jk k k k

AF
L F u s L F u s k m

s A s A
 

 
 

 




 

  (9) 

Before solving these equations, we consider the following sets. 

Let 
, ={ , 1, , }k jG k k k j   be a set, where 1 k m   and 1 1j k   . By ( )

, ,0 1h

k jG h j    we 

denote subsets of ,k jG  which formed by excluding h  elements except for k  and k j  elements of the set. 

For example, let = 6, = 3k j . Then , = {6,5,4,3}k jG  and (0)

, ,=k j k jG G , (1)

, = {{6,5,3},{6,4,3}}k jG  and 

(2)

, = {6,3}k jG . 

From (8) and the recurrence equation (9), we have:  

 
11

, ,

=1 =0, ,
( )
,

( )[ ]( )
[ [ ]]( , ) = [ ]( ),

( ) ( ( ))

jk
k j rk

k k j
k

j rk k
r

G
k k j

PF
L F u s F

s A s A
 

 



 
  

 









 




 (10) 

 where , , ( ), = 2, , , =1, , 1,k j rP k m j k   are combinations of multiplication and sum of functions 

, ( ), = 2, , , =1, , 1A k j      . 

Applying the inverse Laplace transform to (8) and (10), we get:  

 1
1 , 1,1 1

1 1
[ ]( , ) = ( ( ) ) [ ]( ),F u t E A t F



      

 , ,[ ]( , ) = ( ( ) ) [ ]( )k
k k k k

k k
F u t E A t F



      

  
11

, , , , , ,

=1 =0

( ) ( ( ) ) ( , ) [ ]( ),
jk

k j

k j r k j k j k j r k j
k j k j

j r

P E A t V t F


     




  
 

   
  

  

where  

 
1

, , , ,
( )
,

( , ) = ( ( ) ).k j r
r

G k j
k k j

V t t E A t
  

    
 

 


  


   

Here "" is the convolution operation, and " " is the convolution product. Thus, the solution of the 

Cauchy problem (3)-(4) has the representation when ( , ) 0H t x  :  

 ( , ) = ( , ) ( ), > 0, ,nU t x S t D x t x   (11) 

 where ( , )S t D  stands for the pseudo-differential matrix operator with the matrix-symbol ( , )S t  :  

 



, , ,

11

, , , , , ,

=1 =0

0 if < ,

( , ) = ( ( ) ) if = ,

( ) ( ( ) ) ( , )
if > .

k
k j k k

k k

jk
k j

k j r k j k j k j r
k j k j

j r

k j

s t E A t k j

P E A t V t
k j



 



 

 

  




 
 








   

 


 

If ( , ) 0H t x  , then the representation of a formal solution to problem (3)-(4) is obtained from (11) and the 

fractional Duhamel principle [8, 9]. The solution takes the following form:  

 
1

0

( , ) = ( , ) ( ) ( , ) ( , ) .

t

tU t x S t D x S D H t x d       

Let us also introduce the pseudo-differential operator ( , )S D , the entries of the matrix-symbol ( , )S   , 

which have the form:  



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  138 
 

 

 

1

, , ,

11
1

, , , , , ,

=1 =0

0 if < ,

( , ) = ( ( ) ) if = ,

( ) ( ( ) ) ( , )
if > .

k k
k j k k

k k

jk
k j k j

k j r k j k j k j r
k j k j

j r

k j

s E A k j

P E A V
k j

 

 

 

 

    

     






 

 
 






 

   
   


 

Lemma 2. (see, for example, [10]) The following equality holds:  

 
1

0 0

( , ) ( , ) = ( , ) ( , ) ,

t t

tS D H t x d S D H t x d           

where 1  is a m  dimentional vector.  

Using Lemma 2, we can rewrite the formal solution of problem (3)-(4) in the following form:  

 
0

( , ) = ( , ) ( ) ( , ) ( , ) , 0 , .

t

nU t x S t D x S D H t x d t T x         (12) 

Main theorem. Before presenting the main theorem, we show that the formal solution (12) constructed in the 

previous section satisfies all the requirements of Initial-Boundary Value Problem. Let us start by checking 

the convergence of the expression ( ) ( , )D U t x . Note that each ( , ), =1, ,iu t x i m  is subject to operators 

from the column i of the given matrix ( )D . For example, the operators 
1,1 2,1 ,1( ), ( ), , ( )mA D A D A D  act on 

1( , )u t x . 

Let us denote (see (12)):  

 ( , ) = ( , ) ( , ),U t x W t x Y t x  

where  

 
0

( , ) = ( , ) ( ), ( , ) = ( , ) ( , ) , 0 , .

t

nW t x S t D x Y t x S D H t x d t T x        

We estimate expressions ( , )W t x  and ( , )Y t x  separately. Let ( , )iw t x  and ( , )iy t x , where =1, , ,i m  be the 

entries of the vector functions ( , )W t x  and ( , )Y t x , respectively. 

To investigate ( , ), = 1, ,iw t x i m , it is sufficient to consider the following integrals:  

 1
1, , 1,1 1

1 1
| |<

ˆ( , ) = ( ( ) ) ( ) ,ix

R

R

w t x E A t e d
 

 



     

 , , ,

| |<

ˆ( , ) = ( ( ) ) ( ) ixk
k R k k k

k k
R

w t x E A t e d
 

 



   
11

, ,

=1 =0| |<

ˆ( , ) ( ) ,
jk

ix

k j r k j

j r R

Q t e d



   




   

where = 2,..,k m  and  

  , , , , , , , ,( , ) = ( ) ( ( ) ) ( , ) .k j

k j r k j r k j k j k j r
k j k j

Q t P E A t V t


    

 
 

   

We have the following statement. 

Lemma 3. 1) To estimate all coefficients before each ˆ ( )i  , it suffices to estimate 

, , ,0( ) ( , ), =1, , .q q m m iA Q t q m   

2) This estimate is given by  

 
( ) = 1,

, , ,0 , , ,| ( ) ( , ) | | | ,

m

j i
p l m i j ii i

q q m m i
i m

A Q t C t

  



    


   

 


 

where p  is defined in (1), and (0,1)   is arbitrary. 

The proof of this lemma follows from mathematical induction (see [10]). 

Now set > / 2n  and choose > 0  such that ( ) > / 2m i n   . Then applying Lemma 3 and using 

the Holder inequality we get:  

 = 1

, , , , ,( )
,=1 ( )

2

|| ( ) ( , ) || || || .

m

j ik
j i

q q k R n iC p li k i i ni L

A D w t x C t

  

   






 



  (13) 
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Let us now estimate expressions ( , ), =1, ,iy t x i m . To do this it is sufficient to consider the 

following functions:  

 
1

1 1
1, , 1,1 1

1 1
0 | |<

ˆ( , ) = ( ( ) ) ( , ) ,

t

ix

R

R

y t x E A h t e d d
  

 



      
     

11
1

, , , , ,

=1 =00 | |< 0 | |<

ˆ ˆ( , ) = ( ( ) ) ( , ) ( , ) ( , ) ,

t tjk
ix ixk k

k R k k k k j r k j
k k

j rR R

y t x E A h t e d d S h t e d d
   

 

 

            


  

        

where = 2, ,k m  and  

  1

, , , , , , , ,( , ) = ( ) ( ( ) ) ( , ) .k j k j

k j r k j r k j k j k j r
k j k j

S P E A V
 

        


 

 
 

   

 Lemma 4. 1) To estimate all coefficients before each ˆ ( , )ih t   , it suffices to estimate only 

, , ,0( ) ( , ), =1, , .q q m m iA S q m  
 

2) This estimate reads:  

 
( ) =,

, , ,0 , , ,| ( ) ( , ) | | | ,

m

j
p l m i j ii i

q q m m i
i m

A S C

 



      
  

 


 

where p  is defined in (1) and (0,1)   is arbitrary.   

This lemma is proved analogously as Lemma 3 (see [10]). 

Now set > / 2n  and choose > 0  such that ( ) > / 2m i n   . Then applying Lemma 4 and using 

the Holder inequality we get:  

 
, , , , , ,( ) [0, ] ,=1 ( )

2

|| ( ) ( , ) || || ( , ) || .max
k

q q k R n iC p li k t T i i ni L

A D y t x C h t      

   (14) 

Based on the proven estimates (13), (14), the following main result of the work: 

Theorem 1. Let >
2

n
  and ,

2( ) ( )
p l ni i

i x L



 

 , =1, ,i m  and ,

2( , ) ( )
p l ni i

ih t x L
  

 , =1, ,i m . 

Then the solution of Initial-Boundary Value Problem exists and is unique, and the solution of this problem 

has the representation (12).  

Remark 1. If all diagonal operators , ( )j jA D  have the same order, then *

, = 0i ip l , and the 

condition for initial data and source terms reduces to:
2, ( , ) ( ), > .

2

n

j j

n
h t x L   This ensures continuity 

by the Sobolev embedding theorem. The condition >
2

n
  is sharp, as unbounded functions may exist when 

= .
2

n
  
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KO‘CHISHI MASALASIDAGI HOSILA TARTIBINI TIKLASH  

 

Xolliyev Faxriddin Boxodirovich,  

Termiz davlat universiteti 

 «Kompyuter va dasturing injiniring» kafedrasi o‘qituvchisi  

surxon88@bk.ru 

 

Annotatsiya. Maqolada fraktal tuzilishga ega bo’lgan g‘ovak muhitlarda kuzatiladigan anomal 

modda ko‘chish jarayonlarini tasvirlovchi kasr tartibli differensial modelda hosila tartibini tiklash masalasi 

ko‘rib chiqiladi. Bunday modellarda funksiyalarning hosila tartibini aniqlash ko‘pincha murakkab yoki 

amaliy jihatdan imkonsiz bo‘lganligi sababli, parametrlarni aniqlash va modellashtirish aniqligini oshirish 

uchun hosilalarsiz optimallashtirish yondashuvlaridan foydalanish talab etiladi. Kasr tartibli hosilalar 

tartibini tiklash uchun samarali natija beruvchi Nelder–Mead simpleks algoritmining qo‘llanishi tahlil 

qilinadi. O’rganilayotgan masala funksionalni minimallashtirish orqali hosila tartibi va model 

parametrlarini aniqlash imkonini berib, anomal modda ko’chishi jarayonining matematik tavsifini 

aniqlashtirishda barqaror va amaliy vosita sifatida namoyon bo‘ladi.  

Kalit so‘zlar: anomal modda ko‘chishi, fraktal g‘ovak muhit, kasr tartibli hosila, hosila tartibini 

baholash, Nelder–Mead usuli, kasr tartibli differensial tenglamalar, optimallashtirish usullari, 

parametrlarni identifikatsiya qilish. 

 

ВОССТАНОВЛЕНИЕ ПОРЯДКА ПРОИЗВОДНЫХ В ЗАДАЧЕ АНОМАЛЬНОГО 

ПЕРЕНОСА ВЕЩЕСТВ В ПОРИСТЫХ СРЕДАХ С ФРАКТАЛЬНОЙ СТРУКТУРОЙ 

 

Аннотация. В статье рассматривается задача восстановления порядка производной в 

дробной дифференциальной модели, описывающей аномальные процессы переноса вещества, 

наблюдаемые в пористых средах с фрактальной структурой. Поскольку определение порядка 

производных функций в таких моделях часто является сложным или практически невозможным, для 

определения параметров и повышения точности моделирования требуется использование подходов 

к оптимизации без производных. Анализируется применение симплексного алгоритма Нельдера-

Мида, дающего эффективный результат восстановления порядка дробных производных. 

Исследуемая задача представляет собой устойчивый и практический инструмент для уточнения 

математического описания процесса аномального переноса вещества, позволяющий определить 

порядок производной и параметры модели путем минимизации функционала. 

Ключевые слова: аномальный перенос вещества, фрактальная пористая среда, дробная 

производная, оценка порядка производной, метод Нельдера-Мида, дробные дифференциальные 

уравнения, методы оптимизации, идентификация параметров. 

 

RECOVERY OF DERIVATIVE ORDER IN THE ANOMALOUS MASS TRANSFER 

PROBLEM IN FRACTAL POROUS MEDIA 

 

Abstract. The article examines the problem of restoring the order of the derivative in a fractional 

differential model describing anomalous solute transport processes observed in porous media with a fractal 

structure. Since determining the order of derivative functions in such models is often complex or practically 

impossible, it is necessary to use optimization approaches without derivatives to determine parameters and 

improve modeling accuracy. The application of the Nelder–Mead simplex algorithm, which gives an effective 

result in restoring the order of fractional derivatives, is analyzed. The problem under study represents a 

stable and practical tool for refining the mathematical description of the anomalous solute transpot process, 

allowing for determining the order of the derivative and model parameters by minimizing the functionality. 

Keywords: anomalous mass transfer, fractal porous medium, fractional derivative, derivative order 

estimation, Nelder-Mead method, fractional differential equations, optimization methods, parameter 

identification. 
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Kirish. So‘nggi yillarda g‘ovak muhitlarda modda ko‘chish jarayonlarini tavsiflovchi matematik 

modellar, ayniqsa, fraktal tuzilishga ega murakkab fraktal muhitlarda anomal modda ko’chishi bilan bog‘liq 

masalalar ilmiy tadqiqotchilarning alohida e’tiborini tortmoqda. Bunga bir nechta omillar sabab bo‘lib, 

ulardan eng muhimi shundan iboratki, real g‘ovak muhitlarning tuzilishida kuzatiladigan fraktallik klassik 

diffuziya tenglamalari bilan yetarli darajada tadqiq etishni qiyinlashtiradi. Moddaning makroskopik 

darajadagi sekinlashgan yoki tezlashgan ko’chishi ko‘pincha kasr tartibli differensial tenglamalar orqali 

ifodalanadi, ularning parametrlaridan biri bo‘lgan hosila tartibi fizik jarayonning chuqur ichki xususiyatlarini 

belgilab beradi. 

Fraktal tuzilishga ega bo’lgan g’ovak muhitlarda anomal modda ko’chishni o‘rganishning amaliy 

qo‘llanish sohasi nihoyatda keng: 1) geofizik jarayonlarda suyuqlikning murakkab qatlamlar bo‘ylab 

tarqalishi, 2) gidrogeologik muhitlarda ifloslantiruvchi moddalarning tarqalish tezligini baholash, 3) kimyo-

texnologik tizimlarda diffuziya jarayonlari, 4) neft-gaz konlarida filtratsiya va kollektor xossalarini aniqlash, 

5) ekologik monitoring, 6) biologik to‘qimalardagi modda almashinuvi, 7) materialshunoslikda g‘ovak 

strukturalarning o‘tkazuvchanlik xususiyatlarini tahlil qilish va boshqalar. Mazkur jarayonlarning fraktal 

tabiati ularni tavsiflovchi tenglamalarning ko‘pincha teskari va nekorrekt masalalar turkumiga kirishiga olib 

keladi. 

Hosila tartibini tiklash masalasi ham shunday murakkab teskari masalalardan biri bo‘lib, u kasr tartibli 

differensial tenglamalarda mavjud bo‘lgan fizik parametrning bevosita kuzatishlarga asoslanib aniqlanishini 

talab qiladi. Zamonaviy sonli metodlarning rivojlanishi, fraktal geometriya asosidagi modellar paydo 

bo‘lishi, hisoblash texnologiyalarining takomillashuvi anomal ko’chishning murakkab teskari masalalarini 

samarali yechishga yo‘l ochmoqda. 

Kasr hosilalar bilan ifodalangan modellar real fizik jarayonlarning murakkab xususiyatlarini aniqroq 

aks ettiradi. Biroq, bunday modellar uchun kasr tartibli hosilalarning parametrlari va tartiblarini aniqlash 

masalalari, ayniqsa, teskari qo‘yilishdagi tadqiqotlar nazariy va amaliy jihatdan murakkab bo‘lib, fanning 

ko‘plab sohalarida hali yetarlicha o‘rganilmagan. Bir o‘lchovli va ikki o‘lchovli kasr tartibli diffuziya 

tenglamasining koeffitsiyentini aniqlash uchun teskari masalalar [1, 2, 3, 4, 5, 6] ishlarda o‘rganilgan. 

Ushbu maqolada fraktal tuzilishga ega g‘ovak muhitlarda anomal modda ko‘chishi tenglamalaridagi 

kasr tartibli hosilaning tartibini kuzatuv ma’lumotlari asosida tiklash, ya’ni hosila tartibini aniqlash bo‘yicha 

teskari masalani ishlab chiqish va uni tahlil qilishdir.  

1. Masalaning qo‘yilishi.  Ikki zonadan iborat bo‘lgan fraktal tuzilishga ega g‘ovak muhitda 

moddaning anomal ko‘chishi tenglamalari uchun teskari masala qaralgan. Birjinslimas muhit fraktal 

tuzilishga ega bo‘lsa modda ko‘chishi tenglamalari ham fraktal o‘lchamga bog‘liq tarzda kasr tartibli xususiy 

hosilali differensial tenglamalar orqali ifodalanadi. Modda ko‘chishi tenglamalari aynan kasr hosilali 

ko‘rinishda bo‘lsa tajriba natijalariga yaxshiroq mos kelishi ko‘rsatilgan. Ikki zonadan iborat bo‘lgan fraktal 

tuzilishga ega g‘ovak muhitda modda ko‘chishi jarayoni quyidagi kasr hosilali tenglamalar yordamida 

yoziladi [7-9].   

Tenglamalar quyidagicha bo‘ladi: 
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bu yerda ,   – hosila tartiblari, ,m im  – g’ovaklik koeffitsiyenti, ,mc imc  – hajmiy konsentratsiya, mD – 

gidrodinamik dispersiya koeffitsiyenti, t  – vaqt, х  – koordinata bo’yicha o’zgaruvchi, mv  – zarracha 

harakatining o’rtacha tezligi,   – massa uzatish koeffitsiyenti.   ,1 T   .1 T с  – o’lchamsiz 

kattaliklar,   ,/   Ttc     TLD / , L – uzunlik o’lchovi, T – vaqt o’lchovi.  va   kasr 

hosilalarning tartiblari quyidagi oraliqda o‘zgaradi: ,10    .21     

 ,0  sohada masala qaraladi. Boshlang‘ich va chegaraviy shartlar: 

  ,0),0( xcm   ,0),0( xcim        (3) 

,)0,( 0ctcm    .0),( tcm        (4) 

Teskari masalani yechish uchun (3), (4) boshlang’ich va chegaraviy shartlardan tashqari qo‘shimcha 

shartlar ham kerak bo‘ladi. Bunday shartlar sifatida lx , 3,2,1l  nuqtalarda konsentratsiyaning vaqt 

bo‘yicha o‘zgarishi ma’lum bo‘ladi, ya’ni )(tzl , 3,2,1l  funksiyalar beriladi. Ko‘pincha )(tzl , 3,2,1l  
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funksiyalar tajriba natijalari orqali aniqlanadi. Teskari masalani yechishda )(tzl , 3,2,1l  funksiyalarni 

“kuzatish ma’lumotlari” sifatida qabul qilish mumkin.  

Shunday qilib qo‘shimcha shartlarni quyidagicha yozishimiz mumkin: 

)(),( tzxtс llm  , 3,2,1l .        (5) 

Teskari masala quyidagi tartibda qo‘yiladi:  ,  kasr hosila tartiblari quyidagi funksional 

minimumidan aniqlanadi: 

      
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
n

l

T

llm dttzxtcJ
1 0

2
,ξ ,   ),( ξ ,      (6) 

bu yerda ),( lm xtс  – (1)-(4) masala  ,  parametrlarining qandaydir berilgan qiymatlaridagi yechimi 

hisoblanadi.  ,   larni (6) funksional minimumidan aniqlash uchun Nelder–Mead usulini qo‘llaymiz. 

Ko‘p o‘zgaruvchili funksiyaning lokal minimumini topishning simpleks usuli Neler va Mid tomonidan 

ixtiro qilingan. Ikki o‘zgaruvchi uchun simpleks uchburchak bo‘lib, usul uchburchakning uchta uchidagi 

funksiyaning qiymatlarini taqqoslaydigan qidiruv sxemasidir. Funksiya eng katta qiymat qabul qiladigan eng 

yomon cho‘qqi tashlab yuboriladi va yangi cho‘qqi bilan almashtiriladi. Yangi uchburchak hosil bo‘ladi va 

qidiruv davom etadi. Bunda uchburchaklar ketma-ketligi quriladi (ular har xil shaklda bo‘lishi mumkin), 

ularning uchlaridagi funksiyaning qiymatlari borgan sari kamayib boradi. Uchburchakning o‘lchami 

kichraytiriladi va natijada minimum nuqtasining koordinatalari topiladi [10]. 

2. Ayirmali masala.  (1) – (4) masala 
s

 , 
s

  da chekli ayirmalar usuli yordamida sonli 

yechiladi [3].  Ttx  0,0  sohada   o’zgarmas qadam bilan to’r kiritib olamiz. 

 MTMjjtNLhNiihxtx jijih /,,0,,/,,0,),,(   , bu yerda h  – x  koordinata bo‘yicha to‘r 

qadami ,    – t  bo’yicha vaqt qadami, L   – g‘ovak muhitning xarakterli uzunligi. 

Kvazireal eksperiment o‘tkazish uchun dastlab  (1) – (4) to‘g‘ri masala 8,0exact , 8,1exact  

berilgan qiymatlarda chekli ayirmalar usuli bilan sonli yechiladi. Sonli hisoblashlar natijalari bo‘yicha 

)( jll tzz  , Mj ...,,2,1 , nl ...,,2,1  to‘rli funksiya aniqlanadi. )( jtz  funksiya teskari masalani yechish 

uchun berilgan ma’lumotlar bo‘lib xizmat qiladi. Ko‘pincha real holatlarda bu funksiya eksperimental 

aniqlanadi va ma’lum xatolikka ega bo‘ladi. Bu xatolikni modellashtirish uchun )(tz  funksiya quyidagi 

tarzda hisoblanadi:  
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bu yerda   – xatolik darajasi, )( jt – tekis taqsimlangan tasodifiy sonlar )1,0()(  jt . 

(1) tenglama chekli ayirmalar usuli yordamida Kaputo ta’rifidan foydalanib quyidagicha 

approksimatsiya qilinadi: 
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Ayirmali approksimatsiyalar kinetika tenglamasi (2) uchun quyidagi ko‘rinishda bo’ladi: 
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bu yerda )(Г - Eylerning gamma funksiyasi, 
j

ic - ),( ij xt nuqtada aniqlangan to’r funksiya. 

Boshlang’ich va chegaraviy shartlar quyidagicha approksimatsiya qilinadi: 
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)(tzl
  funksiyalar grafiklari 1 – rasmda tasvirlangan. 

 

   
 

 

   
 

 

   
 

 

   

1-rasm.  tzl


 funksiya grafigi 
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bu yerda 3,2,1, lxl  – koordinata to‘ri tugunlariga mos tushadi. 

3. Sonli hisoblash natijalari 

Hisoblashlarda parametrlarning quyidagi qiymatlaridan foydalanilgan: 1,00 c , ,1  ,1,0h  

,/4,0 33 mmm   33 /1,0 mmim  , смD /10 5  . 

 Sonli hisoblashlarda MATLAB muhitining Nelder–Mead usuliga asoslangan fminsearch() funksiyasi 

qo‘llanildi. 

1-jadvalda kasr tartibli modda ko’chishi jarayonlarini tavsiflovchi matematik modellar tarkibidagi 

kasr hosila tartibini gradient talab qilmaydigan Nelder–Mead simpleks usuli orqali identifikatsiya qilish 

natijalari keltirilgan. Bu usul ko‘p o‘lchamli maqsad funksiyasini minimallashtirishda geometrik simpleks 

prinsipiga tayanadi va har bir iteratsiyada simpleksning eng yomon tugunini akslantirish (reflection), 

kengaytirish (expansion), siqish (contraction) yoki global kichraytirish (shrink) orqali yangilaydi. 

Boshlang‘ich yaqinlashish tugunlari sifatida α, β hosila tartiblari tanlanib, ularning haqiqiy qiymatlariga 

yaqinlashish jarayoni iterativ baholangan. 

            1-jadval. 

 % 

Boshlang’ich 

yaqinlashish 
Hisoblangan qiymat Nisbiy xatolik 

0

  
0

  
s

  
s

  




exact

exact
s

100% 




exact

exact
s

100% 

8,0exact  ,   8,1exact   

0 0,6 1,6 0,80000047 1,799971 0,00000058 0,0000159 

3% 0,6 1,6 0,80024851 1,793342 0,00031063 0,0036988 

0 0,95 1,95 0,80000054 1,799972 0,00000067 0,0000153 

3% 0,95 1,95 0,79871292 1,80998 0,00160885 0,0055447 

0  da boshlang‘ich yaqinlashish 6.0
0

 , 6.1
0

  bo‘lganda   vaqt bo’yicha hosila tartibi 

0.000058%  va   koordinata bo’yicha kasr hosila tartibi 0,00159% aniqlada tiklanmoqda, boshlang‘ich 

yaqinlashish 95,0
0

 , 95,1
0

  bo‘lganda ham   0000067% va   esa 000153% nisbiy xatolikka yo’l 

qo’yilgan holda tiklanmoqda, bu yuqori samaradorlikka erishilgan holda tiklanishni anglatadi (1-jadval). 

 

  

2-rasm. Hosila tartibi 8,0exact  va 8,1exact ning qo’zg’atilmagan ( 0 ) qiymatida  

tiklanishi 

Bunda: a)      95,0
0

 ,          6,0
0

 ,   b)        95,1
0

 ,           6,1
0

 . 

 

s



 

s

  

s

  

s

  

s

 

s

 

)a  

)a  )b  

)b  
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3-rasm. Hosila tartibi 8,0exact  va 8,1exact ning qo’zg’atilgan ( %3 ) qiymatida  tiklanishi 

Bunda: a)      95,0
0

 ,          6,0
0

 ,   b)        95,1
0

 ,           6,1
0

 . 

 

%3  da boshlang‘ich yaqinlashish 6.0
0

 , 6.1
0

  bo‘lganda   vaqt bo’yicha hosila tartibi 

0,031063%  va   koordinata bo’yicha kasr hosila tartibi 0,36988% aniqlada tiklanmoqda, boshlang‘ich 

yaqinlashish 95,0
0

 , 95,1
0

  bo‘lganda ham   0,160885% va   esa 0,55447% nisbiy xatolikka yo’l 

qo’yilgan holda tiklanmoqda,  jadval natijalari shuni ko‘rsatadiki, δ ortgan sari, model parametrlarini 

tiklashdagi nisbiy xatolik ham oshadi. Bu esa, boshlang‘ich tugunlarda delta xatolik darajasi yuqori bo‘lsa, 

parametrlarni aniqlash aniqligi pasayishini bildiradi. (1-jadval). 

2, 3 – rasmlarda modda ko‘chishi masalasidagi konsentratsiyaning vaqt bo‘yicha hosila tartibi 

8,0exact   va modda ko‘chishi masalasidagi diffuziya hadidagi hosila tartibi 8,1exact   qiymatlarini 

tiklashning turli qo‘zg‘alishlarda hisoblash natijalari keltirilgan.  

Hisoblashlar dastlab boshlang‘ich ma’lumotlar qo‘zg‘atilmagan holda, yani 0  бo‘lgan hol uchun 

olingan (2(а, b) – rasm). 3(а, b) – rasmda %3  bo‘lgan hollar uchun grafiklar keltirilgan. Hosila tartibi 

  va   ni tiklash bo‘yicha keltirilgan grafiklarda dastlabki 40 ta iteratsiya natijalari keltirilgan. 2 - rasmda 

%0  da pastdan boshlang‘ich yaqinlashish 6,0
0

 , 6,1
0

  bo‘lganda   va  ning tiklangan qiymatlari 

0,80000047
s

 ва 1,799971
s

 tashkil qildi.   ni tiklashdagi nisbiy xatolik 0,000058% ,   ni 

tiklashdagi nisbiy xatolik esa 0,00159% . Yuqoridan boshlang‘ich yaqinlashish 95,0
0

 , 95,1
0

  bo‘lganda 

  va   ning tiklangan qiymatlari 0,80000054
s

 va 1,799972
s

 tashkil qildi.   ni tiklashdagi nisbiy 

xatolik 0,000067% ,   ning qiymati esa 0,00153%  ga teng. 3-rasmda dastlabki xatolik %3  da xuddi  

2 - rasmdagi kabi pastdan boshlang‘ich yaqinlashishlarda tiklangan qiymatlar 8024851,0
s

 va 

1,793342
s

 tashkil qildi. Bunda nisbiy xatolik mos ravishda 0.031063% , 0,36988%  ga teng. Yuqoridan 

boshlang‘ich yaqinlashishlarda tiklangan qiymatlar 0,78871292
s

 va 1,80998046
s

 tashkil qildi. Bunda 

nisbiy xatolik mos ravishda 0,160885% , 0,55447% ga teng. 2 va 3 rasmlarni solishtirsak xatolik 

berilmagan holatda kamroq iteratsiya talab qilgan holda tezroq tiklanmoqda, xatolik berilganda esa nisbatan 

iteratsiyalar soni ko’proq va mos ravishda tiklanish ham ozgina kechikayotganini ko’rishimiz mumkin. 
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УДК 51 

 

НЕЛОКАЛЬНАЯ ЗАДАЧА С ИНТЕГРАЛЬНЫМ УСЛОВИЕМ СКЛЕЙКИ ДЛЯ 

НАГРУЖЕННОГО УРАВНЕНИЯ СМЕШАННОГО ТИПА С ДРОБНОЙ ПРОИЗВОДНОЙ 

КАПУТО 

 

Даминова Мукаррам Султон кизи,  

Каршинский государственный университет 

Шодиева Севинч Расул кизи, 

Каршинский государственный университет 

Абдижабборов Махмуд Абдижалил угли, 

Каршинский государственный университет 

 

Аннотатция. Данная работа посвящена доказательству единственности и существования 

решения нелокальной задачи с интегральным условием склеивания для нагруженного уравнения 

параболо-гиперболического типа, включающего оператор Капуто дробного порядка. 

Единственность поставленной задачи доказывается методом интегралов энергии, а существование 

– методом интегральных уравнений. 

Ключевые слова: нагруженное уравнение, уравнение параболо-гиперболического типа, 

оператор дробного порядка в смысле Капуто, интегральное условие склеивания, единственность и 

существование решения. 

 

A NONLOCAL PROBLEM WITH AN INTEGRAL GLUING CONDITION FOR A LOADED 

EQUATION OF MIXED TYPE WITH A FRACTIONAL CAPUTO DERIVATIVE 

 

Abstract. This paper is devoted to proving the uniqueness and existence of a solution to a nonlocal 

problem with an integral gluing condition for a loaded parabolic-hyperbolic equation including a fractional-

order Caputo operator. Uniqueness of the problem is proved using the energy integral method, and existence 

is proved using the integral equation method. 

Keywords: loaded equation, parabolic-hyperbolic equation, fractional-order Caputo operator, 

integral gluing condition, uniqueness and existence of a solution. 

 

KASR TARTIBLI KAPUTO HOSILASI BILAN ARALASH TURDAGI YUKLANGAN 

TENGLAMA UCHUN INTEGRAL YAQINLASHISH SHARTI BILAN NOLOKAL MASALA 

 

Annotatsiya. Ushbu maqola yuklangan parabolik-giperbolik tenglama, shu jumladan, kasr tartibli 

Kaputo operatori uchun integral yaqinlashish sharti bilan nolokal muammoning yechimining o'ziga xosligi 

va mavjudligini isbotlashga bag'ishlangan. Masalaning o‘ziga xosligi energiya integral usuli yordamida, 

mavjudligi esa integral tenglama usuli yordamida isbotlanadi. 

Kalit so‘zlar: yuklangan tenglama, parabolik-giperbolik tenglama, kasr tartibli Kaputo operatori, 

integral yaqinlashish sharti, yechimning yagonaligi va mavjudligi. 

 

Введение. Применение теории дробного интегрирования и дифференцирования в дробных 

электрических сопротивлениях биологических элементов, в дробном управлении диффузионными 

системами, в управлении движением, для анализа сигналов, используемых в робототехнике, 

динамических системах и управлении механическими манипуляторами, можно найти в работах А.А. 

Килбаса, Х. М. Шриваставы, Дж. Дж. Трухильо [1], К. С. Миллер и Б. Росс [2], И. Подлубный [3], С. 

Г. Самко, А. А. Килбас, О. И. Маричив [4] Краевые задачи для уравнений параболического и 

смешанного типов, исключающие дробные интегро-дифференциальные операторы, такие как Капуто 

и Риман-Лиувилль, были исследованы в работах [5-9]. Первые фундаментальные исследования 

теории нагруженных уравнений принадлежат А.М. Нахушеву [10-11]. В этих работах даётся наиболее 

общее определение нагруженного уравнения и подробная классификация нагруженных уравнений: 

нагруженные дифференциальные, интегральные, интегродифференциальные, функциональные 

уравнения, а также их многочисленные приложения. За этими исследованиями последовали работы 

[12-17], в которых были получены интересные результаты. С другой стороны, нам необходимо 

отметить работы [18-20], в которых методом отдельных переменных было исследовано несколько 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  149 
 

локальных и нелокальных начально-краевых задач для нагруженных уравнений в прямоугольных 

областях. 

Вышеприведённые публикации привели к выводу, что исследования в области теории 

нагруженных дифференциальных уравнений дробного порядка актуальны, и эта теория является 

одной из современных и развивающихся теорий PDE. Однако краевые задачи с интегральным 

условием склеивания для уравнений со смешанной нагрузкой дробного порядка еще недостаточно 

изучены. Следует отметить работы [21], [22]. Данная статья посвящена доказательству 

единственности и существования решения нелокальной задачи с интегральным условием склеивания 

для нагруженного уравнения параболо-гиперболического типа, включающего оператор Капуто 

дробного порядка.  

Постановка задачи. Рассмотрим уравнения 
1

1
0

1
1

( , ) ( ) ( ,0) , 0,

0

( ) ( ) ( ,0) , 0,

xx tC y
x

xx yy t
x y

u D u p x y t x u t dt at y

u u q x y t x y u t dt at y


















   


     

          (1) 

С оператором Капуто: 

0
0

1
( ) ( ) ,

(1 )

y

C yD f y t f t dt 


  

 
        (2) 

где  0 , , 1; ( , )p x y    и  ( , )q x y  заданные функции. Пуст Ω ограничена сегментами: 

 1 2 ( , ) : 0, 0 ,B B x y x y h     

 2 2 ( , ) : , 0 1B A x y y h x     

при  и характеристиками: 
1 1: 1, : 0AC x y BC x y    . 

Для уравнения (1) при , здесь  1 2 1 2(1;0), (1; ), (0;0), (0; ), 0,5; 0,5 .A A h B B h C   

Вводим обозначения: 1 1
( ) ; ,

2 2

x x
x 

 
 
 

 
  

11
( ) ( ) ( ) ,

( )

b

xb
x

D f x t x f t dt 


  


         (3)  

   1 2

1
( 0), ( 0), : 0 1 , : 1 , : 0 ,

2
y y x x x x y y h   

 
 

                 

          В области  доказываем единственность и существование решения следующей задачи 

Задача. Найти решение ( , )u x y уравнения (1) из классов функции  

1. ( , ) ( );u x y C   

2. 
0 ( ),c yD u C    

3. ( , ) ( ),xxu x y C      ( , ) ( )yyu x y C   , 

4. 1 2 1 2( , ) ( ),xu x y C B B A A  1 ( , ) ( ), ( , ) ( );y yy u x y C I u x y C I         

удовлетворяющие граничным условиям:  

          
2

1 2
( , ) ( ), ,xu x y y y IA A               (4) 

2
1 2

( , ) ( ), ,xu x y y y IB B          (5) 

 
1( ) ( ) ( ,0) ( ) ( ,0) ( ) ( ,0) ( ), ,y x

d
u x a x u x b x u x c x u x d x x I

dx
           (6) 

и условиям склеивания: 
1

1
1 2 30

lim ( , ) ( ) ( , 0) ( ) ( ) ( ,0) ( ) ( ,0), ,
y ty x

y u x y x u x x r t u t dt x u x x Iy
   


       (7) 

где ( ), ( ), ( ), ( ), ( ), ( ),y y a x b x c x d x   и ( ) ( 1,3)j x j  , заданные функции, такой, что  



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  150 
 

3
2

1
( ) 0j

j
x


  

Единственность решения задачи. Известно, что уравнение (1) по характерической координате 

x y    и  

x y    при 0y   будет иметь вид: 

                                               
1

1( )
( ) ( ,0) .

4 t

q
u t u t dt





            (8) 

Вводим обозначения: 

( ) ( ,0), , ( ) ( , 0), .yx u x x I v x u x x I         (9) 

Решение задачи Коши для уравнения (1) в области   можно представить в виде: 
1

1( ) ( ) 1 1
( , ) ( ) ( ) ( ) ( ) ,

2 2 4

x y x y x y

x y x y

x y x y
u x y v t dt q d d t t dt

 

 
    

  


 

  
          

1 1 1 1
1( ) (1) 1 1

( ) ( ) ( ) ( ) ( ) ,
2 2 4x x

x
u x v t dt q d d t t dt

 

 
     
  


         (10)  

1 1
1( ) ( ) ( )

( ) ( ) ( ) .
2 4 x x

d x v x q x
u x d t x t dt

dx


  



  

 
                    (11) 

После использования (6) с учётом (3) из (11) мы получим: 

 1(1 2 ( )) ( ) 2 (1 ) ( ) 2 ( ) ( ) (1 2 ( )) ( )a x v x x q x c x x b x x            

                                 1
12 (1 ) ( ) ( ) 2 ( )xГ q x D x d x     ,   ( ,0) .x I       (12) 

С учётом обозначений и условия склеивания (7) имеем: 
1

1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
x

v x x v x x r t t dt x x            .x I       (13) 

Дальше от уравнения (1) при  с учётом (2), (3) и  
1 1

00 0
lim ( ) ( ) lim ( )yy y

D f y Г y f y  

 
  

Получили : 

1

1 2

3 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ,0) ( ) 0,

x

x

x Г x v x Г x r t t dt

Г x x Г p x D x

     

    






   

 

     (14)  

(0) (0), (1) (0).            (14) 

Теорема 1. Если 1 2 ( ) 0a x  и для заданных выполняются условия: 

1 1 3(1) (1) (1) 0,с     1 1 3(0) (0) (0) 0,с      2( ) ( ) 0,x r x        (15) 

       
1(0) (0) (1 2 (0)) 0,q a    (0,0) 0,p  ( ,0) 0,p x 

2(0) (0) 0,r      

 (16) 

 1( ) ( ) (1 2 ( )) 0,x q x a x    3 1 1( ( ) ( ) ( )) 0,x c x x     
1(1 2 ( )) ( ) (1 2 ( )) 0,b x x a x  

 (17) 

то решение ( , )u x y задачи единственно. 

Доказательство. Известно, что если однородная задача имеет только тривиальное решение, то 

мы можем утверждать, что исходная задача имеет единственное решение. Для этого предложим, что 

задача имеет два решения, а затем обозначив их разность как ( , )u x y мы получим соответствующую 

однородную задачу. Уравнение (14) умножаем на  и интегрируем от 0 до 1: 
1 1 1 1

1 2
0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x x dx Г x x v x dx Г x x dx r t t dt                    
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1 1

3 1
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ,0) ( )xГ x x x dx Г t p x D x dx              (18) 

С учётом (12) на счёт ( )d x =0, мы получаем: 

1 1 1 22 1
1 1 3

0 0 0

(1 2 ( )) ( )( )
( ) ( ) ( ( ) ( ) ( )) ( ) ( ) ( )

2 1 2 ( )

b x x
x x dx c x x x d x x dx

a x


        


       


 

1 1
11

0

( ) ( ) ( )( ) (1 )
( ) ( )

2 ( ) 1 2 ( ) x

x x q x
t x t dt

a x
  



  
   

 
 

2
1 1 1 1

1

0 0

( )( ) 2 ( ) ( ) ( ) ( ,0) ( ) ( ) ,
2 ( ) x x

x
d r t t dt x p x dx t x t dt

r x



  

 
 
 


           (19) 

где 
1( ) (1 ) ( ) 2 ( ) (1 2 ( )).c x x q x c x a x     

Основываясь на формуле [23] 

1

0

1
cos ( ) , 0 1

( )cos 2
x t z z x t dz

  
 


 

      


 

после некоторых упрощений из (19) мы получим: 
1

2 2
1 1 3 1 1 3

0

( )
( ) ( ) (1)( (1) (1) (1)) (0)( (0) (0) (0))

2
x x dx с с


        

 


        

1 1
2 21

3 1 1
0 0

( )(1 2 ( ))( )
( ) ( ) ( ) ( ) ( ) ( )

2 1 2 ( )

x b x
x c x x x dx x dx

a x


      

      


 

22 11 1
2 2

0 0

( ) (0) ( )( )
( ) ( ) ( ) ( )

2 (0) 2 ( ) x

x
r x x dx dx r t t dt

r r x

  
 

   
   

     

 
     

 

2 2
1 1 1

1

0 0

( ) ( )( )
( )cos ( )sin

2cos (1 ) 2 1 2 ( ) xx

x q xdz
d t zt dt t zt dt

z a x

 
 

 

     
    
    


      

 
 

2 2
1 1 1

0 0

1
( ,0) ( )cos ( )sin .

(1 )cos (1 ) 2 x x

z dz p x d t zt dt t zt dt  
  




    
    
     

     
  

 

Далее, обьединяя по частям в последние два члена, окончательно получаем: 

2 2 2 2
1 1 3 1 1 3

1 ( )
(1) (0) (1)( (1) (1) (1)) (0)( (0) (0) (0))

2 2
с с


          
   


        

1 1
2 21

3 1 1
0 0

( )(1 2 ( ))( )
( ) ( ) ( ) ( ) ( ) ( )

2 1 2 ( )

x b x
x c x x x dx x dx

a x


      

      


 

2 2
1 1 1

2 2

0 0

( ) (0) ( )( )
( ) ( ) ( ) ( )

2 (0) 2 ( ) x

x
r x x dx r t t dt dx

r r x

  
 

    
    

    

 
       

 2 21

0 0

( ) (0) (0) ( )
(0, ) (0, )

4(1 2 (0))sin 2 4sin 2

q
z M z N z dz z dz

a
     

   

 
  

    


 

2 21
2 21

0 0

( ) ( ) (0,0) (0, ) (0, )
( , ) ( , )

1 2 ( ) 2 ( )sin 2

x q x p M z N z
M x z N x z dx dz

a x z


 

 
    

 

 
    

 
 

 
1

2 2

0 0

1
( , ) ( , ) ( ,0) 0

2 ( )sin 2 xz dz M x z N x z p x dx

 


   


        (20) 

где  
1

( , ) ( )cos ,
x

M x z t ztdt    

Таким образом, в силу (0) 0, (1) 0     при  ( ) ( ) 0y y    (18) в силу (15)-(17) из (20) 

делается вывод, что ( ) 0d x  . Следовательно, на основе решения второй краевой задачи для 

уравнения (1) с учётом ,  на счёт (4) и (5), получим ( , ) 0u x y  в   . Далее, из 
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функциональных соотношений (12), с учётом ( ) 0d x  получаем,что ( ) 0x   . Следовательно, на 

основании решения ( , ) 0u x y  в замкнутой области 
 . 

Существование решения задачи  

Теорема 2. Если условия (15)-(17) и 
1 2( , ) ( ) ( ),p x y C C       2( ) ( ) ( ),q x y C C             (21) 

1
2 2( ), ( ) ( ) ( ); ( ), ( ), ( ),y y C I C I a x b x c x    1

1( ), ( ) ( ), ( 1,3),jd x x C I j    (22) 

выполнены, то решение исследуемой задачи существует. 

Доказательство. С учётом (12) на счёт уравнения (14) получим: 
1 1

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ,0) ( ) ( )
x x

x A x x B x t x t dt p x t x t dt                

1

2( ) ( ) ( ) ( ) ( ) ( ) ( )
x

x r t t dt C x x D x          (23) 

здесь 

        1 1( )(1 2 ( )) ( ) ( ) ( ) ( )
( ) , ( ) ,

1 2 ( ) 2(1 2 ( ))

b x x q x x
A x B x

a x a x

      
  

                                      

  

 

                  1
1 1 3

2 ( ) ( ) ( )
( ) ( )( ( ) ( ) ( )), ( ) .

1 2 ( )

x d x
C x с x x x D x

a x

 
  


    


 

Отсюда, при 1x  в силу (1)   0   ' 1   заключаем, что  

1
(1 (1) (1))) (0) (1)

2(1)
(1)

b a d

c




  

  .   (24)  

Интегрируем уравнение (23) от x  до 1 и считая (24) после некоторых вычислений, получаем: 

1

( ) ( , ) ( ) ( ), ,
x

x K x t t dt F x x I         (25) 

Заметим, что это уравнение является интегральным уравнением типа Волтерра второго рода, 

где 

21 1
( ) .

( ) ( ,0)
( , ) ( ) ( ) ( ) ( )

( ) ( )

t t t t

x x x x

B z p z
K x t A t dz dz z r z dz C z dz

t z t z 
 

 
       

 
 (26) 

1 1

( ) (0) ( ) (1) ( ) .
x x

F x D t dt C t dt        (27) 

В силу (22) и (23) из (26) и (27) с учётом 0 , 1    следует, что 

1( , )K x t c   для любого 0 1, 0 1x t                                          (28) 

       
2

( ) .F x C I C I        (29) 

Таким образом, учитывая (28) и (29), мы делаем вывод, что уравнение (25) является 

интегральным уравнением типа Вольтерра второго рода и, основываясь на теории интегральных 

уравнений типа Вольтерра, мы найдём уникальные решения уравнения (25) в классе 

   
2

C I C I . Это решение задаётся формулой [24]:  

1

( ) ( , ) ( ) ( ), .
x

x R x t F t dt F x x I         (30) 

 где – ( , )R x t резольвента -ядро из ( , )K x t  . Интегрируя уравнение (30) от x до 1, получаем 

1 1 1 1

( ) (0) ( ) (1) ( ) ( , )
x t z z

x dt D d C d R t z dz      
 
 
 

         

   
1 1 1

(0) ( ) (1) ( ) , .
x t t

D z dz C z dz dt x I 
 
 
 

            (31) 

В силу (27) и (28) из (30) мы заключаем, что 
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  1 2( ) ( ) ( ).x C I C I         (32) 

Подставляя (30) и (31) в (13) с учётом (21), (22), (32) мы определяем ( )x 
 в классе  

1( ) ( ) ( )x C I C I   .      (33)  

Далее, в силу (32), (33), принимая во внимание (12), 1x   считая, что (1) (1) (0)    и 

(1) 0c   мы находим неизвестную постоянную (1) :  

    (1) (1 (1) (1)) (0) (1) (1).a b d c               (34)  

Таким образом, решение сформулированной задачи может быть восстановлено в области 

 как решение второй краевой задачи для уравнения (1) (см. [5]), а в области 
 как решение 

задачи Коши для уравнения (1) (см. (9)). Следовательно, сформулированная задача однозначно 

разрешима.  

Теорема 2 доказана. 

Замечание. Если 
1

( ) ,
2

a x   тогда из (12) следует, что сформулированная задача эквивалентно 

сводится к интегральному уравнению Вольтерра второго рода относительно 

приведенного ( )x выше, то будет доказана однозначная разрешимость полученного интегрального 

уравнения. 

 

ЛИТЕРАТУРА: 

 

1. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential 

Equations, in: North-Holland Mathematics Studies, vol. 204, Amsterdam: Elsevier, 2006. 523 p. 

2. Miller K.S., Ross B. An Introduction to the Fractional Calculus and Differential Equations, John 

Wiley, New York.  1993. 

3. Podlubny I. Fractional Differential Equations. Academic Press. New York. 1999. 364 p. 

4.  Samko S.G., Kilbas A.A., Marichev O.I. Integrals and derivatives of fractional order and some of 

their applications. Minsk: Science and Technology. 1987.688 p. 

5.  Pskhu A.V. Fractional partial differential equations. Moscow: Nauka, 2005.199 p. 

6. Kadirkulov B. J. Boundary problems for mixed parabolic-hyperbolic equations with two lines of 

changing type and fractional derivative.  Electronic Journal of Differential Equations. 2014.  2014(57).  pp. 

1–7. 

7.  Karimov E.T., Akhatov J.A. Boundary value problem with integral gluing condition for a 

parabolic-hyperbolic equation involving the Caputo fractional derivative. Electronic Journal of Differential 

Equations. 2014. 2014(14).  pp. 1–6. 

8. Ashurov R.R., Cabada A., Turmetov B.Kh. Operator method for construction of solutions of linear 

fractional differential equations with constant coefficients. Fract. Calc. & Appl. Anal.Springer, 2016. 19(1). 

pp. 229-251.   

9. Islomov B. I., Yuldashev T. K., Ubaydullayev.U.Sh.  On Boundary Value Problems for a Mixed 

Type Fractional Differential Equation with Caputo Operator. Bulletin of the Karaganda University. 

Mathematics series. �2021.  1(101).  pp.127-137.  

10. Nakhushev A.M. Equations of Mathematical Biology. M .: Higher school, 1995. 301p. 

11. Nakhushev A.M. Loaded equations and their applications. M .: Science. 2012.233p. 

12. Kaziev V.M. Goursat problem for one loaded integro-differential equations. Differential. 

equations. 1981. T. 17. No 2. pp. 313–319. 

13. B. I. Islomov1, O. Kh. Abdullayev, N. K. Ochilova. On a problem for the loaded degenerating 

mixed type equation involving integral-differential operators. Nanosystems: physics, chemistry, mathematics, 

2017, 8 (3), p. 1{12} 

14. B. I. Islomov, O. Kh. Abdullayev. Gellerstedt type problem for the loaded parabolic-hyperbolic 

type equation with Caputo and Erdelyi–Kober operators of fractional order. Russian Mathematics, 2020, 

Vol. 64, No. 10, pp. 29–42.  

15. Khubiev K.U. On a boundary value problem for a loaded equation of a mixed hyperbolic-parabolic 

type. Dokl. Adyg. (Circassian.) Intern. acad. sciences. 2005. 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  154 
 

16. Abdullaev O. Kh. A nonlocal problem for a loaded mixed-type equation with integral operator. 

Vestnik Sam. state tech. university. Series of Physics and Mathematics. 2016. 

17. Abdullaev O.Kh. Some problems for the degenerate mixed type equation 

involving Caputo and Atangano-Baleanu operators fractional order. Progr. Fract. Differ. Appl. 6, No. 2, 1-

14 (2020) 

18. Sabitov K. B., Melisheva E. P. The Dirichlet problem for a loaded mixed-typeequation in a 

rectangular domain, Russian Math. 2013.  57( 7).  pp. 53-65.  

19. Sabitov K.B. An initial-boundary value problem for a parabolic-hyperbolic equation with loaded 

terms, Russian Math. 2015.59 (6). pp. 23-33. 

20. Ramazanov M.I. On a nonlocal problem for a loaded hyperbolic-elliptic equation in a rectangular 

domain. // Mat. magazine. Almaty. 2002.2 (4). pp. 75–81 

21.  Salakhitdinov M.S., Karimov E.T. On a nonlocal problem with conjugation conditions of the 

integral form for the parabolic-hyperbolic one with the Caputo operator. Reports of the Academy of Sciences 

of the Republic of Uzbekistan. 2014. No. 4. pp.6-9. 

22. Abdullaev O. Kh. Gellerstedt type problem with integral gluing condition for a mixed type equation 

with non-linear loaded term. Lobachevskii Journal of Mathematics, 2021, Vol. 42, No. 3, pp. 479–489 

23. Smirnov M.M. Mixed type equations. M.: Higher school. 1985.304 p. 

24. Mikhlin S.G. Lectures on linear integral equations. M.: Fizmatgiz. 1959.232 p. 

 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  155 
 

УДК 532.546 

 

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПЛОСКОРАДИАЛЬНОЙ 
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имени Шарофа Рашидова 
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Аннотация. В работе рассматривается радиальная задача аномальной фильтрации 

однородной жидкости. Течение однородной жидкости в пористой среде моделировалось 

дифференциальным уравнением с дробными производными. Дробные производные определены в 

смысле Капуто. Задача решена численно c методом конечных разностей. Представлены профили 

скорости фильтрации при различных значениях дробной производной времени в плоской радиальной 

пористой среде. 

Ключевые слова: аномальная фильтрация, время релаксации, дробная производная, метод 

конечных разностей, пористая среда.  

 

NUMERICAL MODELING OF PLANE-RADIAL FILTRATION PROCESSES WITH 

FRACTIONAL DERIVATIVES 

 

Abstract. The paper considers the radial problem of anomalous filtration of a homogeneous fluid. The 

flow of a homogeneous fluid in a porous medium was modeled by a differential equation with fractional 

derivatives. Fractional derivatives are defined in the Caputo sense. The problem was solved numerically 

using the finite difference method. The filtration velocity profiles are presented for different values of the 

fractional derivative of time in a flat radial porous medium. 

Key words: anomalous filtration, fractional derivative, finite difference method, porous media, 

relaxation time. 

 

KASR HOSILALI TEKIS RADIAL SIZISH JARAYONLARINI SONLI 

MODELLASHTIRISH 

 

Annotatsiya. Ushbu ishda bir hil suyuqlikni anomal sizishning tekis radial masalasi ko'rib chiqilgan. 

Birjinsli suyuqlikning g'ovak muhitdagi sizishi kasr tartibli differentsial tenglama bilan modellashtirilgan. 

Kasr hosila Kaputo ta’rifi asosida aniqlangan. Masala chekli ayirmalar usuli bilan yechilgan. Tekis radial 

g'ovak muhitda vaqt bo’yicha kasr hosila tartibning turli qiymatlarida sizish tezligi profillari keltirilgan.  

Kalit so’zlar: anomal sizish, kasr tartibli hosila, relaksatsiya, g'ovakl muhit, chekli ayirmalar usuli.   

 

Введение. Известно, что нефти многих месторождений имеют аномальные реологические 

свойства. Аномальные свойства нефти обусловлены наличием в её составе различных веществ, в 

частности, асфальтенов, смол, парафинов и др.  Аномальная вязкость нефти отражается на её 

движении в системе сбора и внутрипромысловый подготовки, трубопроводного транспорта и др. 

Аномальная вязкость обычно оказывает более сильное влияние на процесс движения нефти в пласте 

[1], что отражается на законе фильтрации. Классический закон Дарси при этом нарушается. 

В [2] показано, что для течения вязкой жидкости в упругих пористых средах получено дробное 

соотношение между силой и потоком. 

Для количественной оценки потока жидкости в естественных геологических средах 

использовались различные формулы, описывающие поток, не подчиняющийся закону Дарси, однако 

не существует общего закона или формулы для расчёта сложной взаимосвязи между скоростью 

потока и градиентом давления для однофазного потока жидкости в естественных средах. Целью в 

работе [3] является предложение и оценка фрактальной модели закона Дарси для расчёта расхода 

жидкости в неоднородных нефтяных пластах.  

В последнее время появились модели фильтрации, где широко стал использоваться аппарат 

дробного дифференцирования. Для лучшего описания потока и давления жидкостей закон Дарси был 

mailto:mzokirov45@gmail.com
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модифицирован с целью введения общего формализма памяти, работающего с градиентами потока и 

давления [4], что подразумевает фильтрацию градиента давления без разделения.  

В [5] представлен закон типа Дарси из дробного закона вязкости Ньютона, который 

предназначен для описания явлений напряжения сдвига в неоднородных пористых средах. В этом 

смысле закон вязкости Ньютона представляет собой обобщение классического закона Дарси. 

В данной работе рассматривается обобщённая релаксационная дробно-дифференциальная 

модель фильтрации однородной жидкости в пористой среде с учётом плоскорадиальной фильтрации. 

Выведено уравнение релаксационной фильтрации с учётом плоскорадиальной фильтрации. 

Поставлена и численно решена задача фильтрации для этого уравнения. Оценено влияние 

плоскорадиальной фильтрации и релаксационных свойств на поле давления и скорости фильтрации. 

Постановка задачи. Область фильтрации показана на рисунке 1. Фильтрация жидкости 

происходит в радиальном направлении в сторону центра области. 

 

 
Рисунок 1. Область фильтрации 

В центре находится скважина радиуса cr . Внешний контур области имеет радиус  R . Учитывая 

круговую симметрию, считается, что показатели фильтрации не зависят от угловой координаты, а 

зависят от радиальной координаты r  и времени t . Закон фильтрации в радиальном случае с учётом 

релаксации по скорости фильтрации и градиента давления с использованием дробных производных 

записывается в виде:  


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где v , p - времена релаксации скорости фильтрации v  и давления p , k - проницаемость 

среды,  - вязкость жидкости, r - координата, 


tD , 


tD - операторы дробной производной в смысле 

Капуто [4], по времени t  порядка   и  , соответственно.  

Заметим, что времена релаксации v и p  в (1) имеют дробную размерность    cp  , 

   cv , соответственно. 

Аналогично [6] на основе (1) выведено уравнение пьезопроводности:  
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rr
tv
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где 𝜘
*

k
  – коэффициент пьезопроводности. 

Пусть в начальный момент в области было постоянное давление  kp . Начиная с 0t  на 

скважине устанавливается постоянное давление сp . На контуре пласта Rr   поддерживается 

первоначальное давление  kp , что соответствует режиму работы открытого пласта, где за счёт 

притока жидкости извне давление поддерживается на постоянном уровне.  
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При отмеченных условиях начальные и граничные условия принимаются в следующем виде:   

,0),0(,),0(  rpDprp tk


      (3) 

kcc pRtpprtp  ),(,),(        (4) 

constpp сk , . 

Уравнение (2) решается при условиях (3), (4). 

Численное решение задачи. В области  TtRr  0,0  введём равномерную сетку 

 MTMjjtNRhNiihrrtr jcji /,,0,,/,,0,,),(   , где h  – шаг сетки по 

координате r ,   – шаг сетки по времени. Сеточную функцию в точке ),( ji tr  обозначим через j

ip . 

Разностная аппроксимация уравнения (2) имеет вид: 
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где )(Г  – гамма функция. 

При известном ),( rtp  скорость фильтрации определяется из (1), после дискретизации 

которого имеем:  

     

        

      







































































j

i

j

i

j

k

k

i

k

i

j

i

j

i

j

k

k

i

k

i

pj

i

j

i

j

i

j

i

j

k

k

i

k

i
vj

i

ppkjkjpp

ppkjkjpp
Г

pp
h

k

vvkjkjvv
Г

v

1
1

0

111

1

1

1

1

0

11

1

1

1

11

1

111
1

0

11

1

1
)2(

)()1(
)2(





















(6

) 

При аппроксимации дробных производных в (5) использована методология [6-8]. 
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Результаты и обсуждение. Задача (1)-(4) решена численно и проанализировано влияние 

vp  , ,  и   на распределение давления и скорости фильтрации в пласте для 
21310 mk  ; 

сПа  210 ; .15,20 МПаpМПаp сk  ; 
110* 103  Па , мrс 1,0  мR 40 . 

Результаты. Характеристики изменения  v  полностью согласуются с изменением p . При 

малых r , т.е. вблизи сr  скорость фильтрации резко возрастает, что объясняется   уменьшением 

поперечного сечения фильтрационного потока. Это характерно для радиальных фильтрационных 

потоков. Как и в случае изменения давления, уменьшение   приводит к уменьшению значений v , а 

уменьшение   – к увеличению v . Влияние v  и 
p  на v  также вполне аналогично с влиянием на 

p ; v  уменьшает, а 
p  увеличивает v . С увеличением времени t  скорость фильтрации 

увеличивается во всей области. 

 

 

 
мr ,  

 

Рисунок  2. Профили давления при различных α  при c3600t  , 
с500λ v  , 

с500λ p  , 1β  . 
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Паp ,10 7  

мr,  

Рисунок 3. Профили давления при различных β  при c3600t  , 
с500λ v  , 

с500λ p  , 1α  . 
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Рисунок 4. Профили изменения скорости при различных β  при 

c,3600t  ,c1000λ v

 ,c500λp

 0.7α   
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смv /,10 4

 
Рисунок 5. Профили изменения скорости  при различных α  при 

c,3600t  ,c1000λ v

 ,c500λp

 0.7β   . 

        смv /,10 4  

 

Рисунок 6. Профили изменения скорости  при c,3600t  ,c500λp

 0.7α  , 0.7β   и 

различных vλ . 

Заключение. Численно решена задача аномальной фильтрации однородной жидкости в плоско 

– радиальной пористой среде. Показано, что уменьшение порядка производной в релаксационном 

члене по скорости фильтрации приводит к замедлению развития поля давления и скорости 
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фильтрации. Уменьшение порядка производной в релаксационном члене закона фильтрации по 

градиенту давления, наоборот, приводит к интенсификации развития полей давления и скорости 

фильтрации.  

 

ЛИТЕРАТУРА: 

 

1. Девликамов В.В., Хабибуллин З.А., Кабиров М.М. Аномальные нефти. М.: «Недра», 1975. - 

168 с. 

2. Luca Deseri., Massimiliano Zingales. A mechanical picture of fractional-order Darcy equation // 

Commun Nonlinear Sci Numer Simulat. 20. 2015 P.940–949. http://dx.doi.org/10.1016/j.cnsns.2014.06.021. 

3. Ailian Chang., HongGuang Sun., Yong Zhang., Chunmiao Zheng., Fanlu Min. Spatial fractional 

Darcy’s law to quantify fluid flow in natural reservoirs // Physica A. 0378-4371, 2018. 

https://doi.org/10.1016/j.physa.2018.11.040. 

4. Caputo M. Models of flux in porous media with memory // Water Resources Research. Vol. 36. №3. 

2000, P. 693-705. 

5. Alberto Ochoa-Tapia J., Francisco J., Valdes-Parada., Jose Alvarez-Ramirez. A fractional-order 

Darcy’s law //Physica A. 374. 2007. P.1-14. doi: 10.1016/j.physa.2006.07.033.  

6. Khuzhayorov B., Djiyanov T.O., Zokirov M.S, Generalized relaxation fractional differential model 

of fluid filtration in a porous medium. // International Journal of Applied Mathematics. Volume 37.  №1. 

Pp.119–132. 2024. doi: http://dx.doi.org/10.12732/ijam.v37i1.10. 

7. Makhmudov J.M., Usmonov A.I., Kuljanov J.B. Solution of the Anomalous Filtration Problem in 

Two Dimensional Porous Media APAMCS, – 2022. – P. 68–80. doi: http: //dx.doi.org/10.1007/978-3-031-

34127-4_7. 

8. Y. Xia, J. C. Wu and L. Y. Zhou, “Numerical Solutionsof Time-Space Fractional Advection-

Dispersion Equations,” ICCES, Vol. 9, №.2, 2009, pp. 117-126. 

http://dx.doi.org/10.1016/j.cnsns.2014.06.021
https://doi.org/10.1016/j.physa.2018.11.040
http://dx.doi.org/10.12732/ijam.v37i1.10


MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  162 
 

 
 TIPIDAGI MAXSUSLIKKA EGA BO‘LGAN SIRTLARDA MUJASSAMLASHGAN 

O‘LCHOVLAR FURYE ALMASHTIRISHINING ANIQ  BAHOSI 

 

Ikromova Dildora Isroil qizi, 

Sharof Rashidov nomidagi Samarqand davlat universiteti 

ikromova_89@mail.ru  

Xudoyberdiyev Dilshodbek G‘ayrat o‘g‘li 

Samarqand davlat pedagogika instituti 

dilshodbekkhudoyberdiev@gmail.com 

 

Annotatsiya. Mazkur maqolada  fazoda  tipdagi maxsuslikka ega bo‘lgan silliq sirtlarda 

mujassamlashgan o‘lchovlarning Furye almashtirishining aniq  -integrallanishi o‘rganiladi. Sirt bosh 

egri chiziqlari nolga teng bo‘lgan nuqtada silliq funksiyaning grafigi sifatida berilgan. Tebranma integrallar 

va masshtablash usullari yordamida Furye almashtirish  uchun  ga tegishli ekani va bu natija 

o‘tkir (aniq) ekanligi isbotlanadi. Shuningdek, yuqori tartibli maxsusliklarda integrallanish buzilishi 

ko‘rsatiladi, bu esa Furye kamayishining maxsuslik turiga bog‘liqligini tasdiqlaydi.  

Kalit so‘zlar: Furye almashtirish, sirt o‘lchovi, -integrallanish, degeneratsiyalangan sirtlar, -

tipdagi maxsuslik, tebranma integrallar.  

 

ТОЧНАЯ -ОЦЕНКА ПРЕОБРАЗОВАНИЯ ФУРЬЕ МЕР, СОСРЕДОТОЧЕННЫХ НА 

ПОВЕРХНОСТЯХ С ОСОБЕННОСТЬЮ ТИПА  

 

Аннотация. В работе исследуется точная  -интегрируемость преобразования Фурье мер, 

сосредоточенных на гладких гиперповерхностях в , обладающих особенностью типа . 

Гиперповерхность задаётся в виде графика гладкой функции, у которой в начале координат обе 

главные кривизны обращаются в нуль. С использованием оценок осцилляторных интегралов и 

масштабных преобразований доказывается, что преобразование Фурье принадлежит  для 

всех , и что этот результат является точным. Также показано, что для особенностей более 

высокого порядка  -интегрируемость нарушается, что подчёркивает зависимость убывания 

преобразования Фурье от типа особенности.  

Ключевые слова: преобразование Фурье, поверхностная мера, -интегрируемость, 

вырожденные гиперповерхности, особенность типа , осцилляторные интегралы. 

 

EXACT -ESTIMATE FOR THE FOURIER TRANSFORM OF MEASURES SUPPORTED 

ON SURFACES WITH AN -TYPE SINGULARITY 

 

Abstract. This paper investigates the exact -integrability of the Fourier transform of surface 

measures supported on smooth hypersurfaces in with an -type singularity. The hypersurface is given 

as the graph of a smooth function whose principal curvatures vanish at the origin. Using oscillatory integral 

estimates and scaling arguments, we prove that the Fourier transform belongs to  for all , and 

that this result is sharp. We also show that the integrability fails for higher-order singularities, highlighting 

the dependence of Fourier decay on the type of singularity. 

Key words: Fourier transform, surface measure, -integrability, degenerate hypersurfaces, -type 

singularity, oscillatory integrals. 

 

Kirish. Biz bu maqolada o‘lchov Furye almashtirishining aniq integrallanish ko‘rsatkichining 

infimumi bo‘lgan  sonini toppish masalasini ko‘rib chiqamiz. Bunda  silliq sirt bo‘lib,  

koordinaralar boshida  tipidagi maxsuslikka ega bo‘lgan silliq funksiyaning grafigi shaklida berilgan. Bu 

maxsuslikka ega bo‘lgan funksiyaning Hessian matritsasining rangi  ga teng, shu sababli ma’lum bir 

nuqtalarda sirtning ikkala bosh egriliklari nolga aylanadi. Biz  tipidagi maxsuslikka ega bo‘lgan 
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funksiyaning grafigi shaklida berilgan sirt o‘lchovining Furye almashtirishi ixtiyoriy  da  ga 

qarashli ekanligini isbotladik.  

Ta’rif. Faraz qilaylik  silliq gipersirt bo‘lsin, va tashuvchisi kompakt bo‘lgan  

funksiya berilgan bo‘lsin.  o‘lchovni qaraymiz. Bu yerda  sirt o‘lchovi  gipersirtda 

aniqlangan.  o‘lchovning Furye almashtirishini quyidagicha aniqlaymiz: 

 
bu intergral  ([1],[2]) orqali berilgan taqsimotning Furye almashtirishiga mos keladi. Bunda 

,  va  vektorlarning skalyar ko‘paytmasi.  

Maqolaning asosiy masalamiz quyidagi to‘plamning infimumini (aniq quyi chegarasi) topishdan 

iborat:   

 
bu yerda , Lebeg fazosi bo‘lib, -darajasi bilan integrallanuvchi bo‘lgan 

funksiyalarning ekvivalentlik sinflaridan tashkil topgan funksiyalar fazosi. Bunda  soniga gipersirt  ustida 

mujassamlashgan o‘lchov Furye almashtirishining aniq integrallanish ko‘rsatkichi deyiladi. 

Umuman aytganda, integrallanish ko‘rsatkichining infimumi bo‘lgan  bo‘lishi mumkin, 

masalan, gipertekislikda mujassamlashgan trivial bo‘lmagan o‘lchovning Furye almashtirishi  ning har 

qanday chekli qiymati uchun integrallanmaydi. Biroq, agar gipersirt E.M.Stain tomonidan kiritilgan “egrilik 

sharti” deb ataluvchi shartni qanoatlantirsa, u holda  chekli son bo‘ladi ([5]). 

Ta’rif. Faraz qilaylik,  funksiya  nuqtaning  atrofida aniqlangan silliq funksiya bo‘lsin va 

 bo‘lsin, Agar bu yerda shunday   lokal diffeomorf akslantirish mavjud 

bo‘lib: 

1. ; 

2. Yakobi matritsasining determinanti nol nuqtada noldan farqli bo‘lsa; 

3. Quyidagi munosabat o‘rinli bo‘lsa: 

 
bunda . U holda   funksiya  nuqtada  tipidagi maxsuslikka ega deyiladi 

[7].  

Biz  funksiya  fazo koordinatalar boshining yetarlicha kichik atrofida aniqlangan deb faraz 

qilamiz.  funksiya koordinatalar boshida  tipidagi maxsuslikka ega bo‘lgan silliq funksiya. Maqoladagi 

asosiy natijamiz quyidagi teoremadan iborat: 

Teorema 1. Faraz qilaylik,  silliq gipersirt  funksiyaning grafigi sifatida aniqlangan 

bo‘lsin, ya’ni  

 
bu yerda  quyidagi shartlarni qanoatlantiruvchi silliq funksiya: 

1. Ixtiyoriy  shartni qanoatlantiruvchi multi-indekslar uchun 

 tenglik o‘rinli; 

2.  nol nuqtada karraligi ko‘pi bilan  bo‘lgan maxsuslikka ega. 
U holda nol nuqtaning shunday  atrofi mavjud bo‘lib, ixtiyoriy  zichlik funksiyasi uchun  

 
munosabat o‘rinli bo‘ladi.   

Izoh. Shuni ta’kidlash kerakki, agar  

 

ya’ni sirtning ikkala bosh egriliklaridan kamida bittasi  fazoning boshida nolga aylanmasa, u holda 

1-teoremaning natijasi o‘rinli bo‘lmaydi.  

Misol 1. Sirt quyidagicha berilgan bo‘lsin: 
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bo‘lsin, bu funksiya uchun kritik nuqtaning karraligi  ga teng [7]. U holda, 

 
shunda,  

. 

Yakobiani: 

 
Integral: 

 
bu yerda, 

 
bu yerda koeffisiyentlar:  

. 

Katta  lar uchun 

 
Shuning uchun chegarada: 

 
Agar  juda kichik bo‘lsa: 

, 

va limit: 

. 

Endi,  integrallanuvchanlikni tekshiramiz. 

Konus ichida:  

 
Shuning uchun  normani pastdan baholaymiz: 

 
chunki  da sferik koordinatalarda  Demak integral: 

 
Bu integral chegaralanmagan, agar  

 

unda  Ayniqsa . Shuning uchun: .   

Boshqa tomondan, agar kritik nuqtaning karraligi 7 dan katta bo‘lsa, u holda teorema 1 ning tasdig‘i 

bajarilmaydi, buni biz  tipidagi maxsuslikka ega bo‘lgan funksiya misolida ko‘rishimiz mumkin. Aniqroq 

qilib aytganda, agar  funksiya  maxsuslikning normal shakliga ega bo‘lsa, ya’ni  

bo‘lsa, u holda  va , ya’ni 1-teoremaning tasdig‘i bajarilmaydi. Buni 

yuqoridagidek oson ko‘rsatish mumkin.  

 
va uning sirt o‘lchovi: 

 
bu yerda  -silliq zichlik funksiyasi.  

Furye tasviri:  
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Teorema 1 ga ko‘ra:  har bir . Biz kritik nuqtaning karraligi  bo‘lganda  

bo‘lganda ham teoremaning tasdog‘i o‘rinli emasligini ko‘rsatamiz.  

Faza funksiyasi:  

 
-bo‘yicha integral  

 
Van der Korput darajali bahosiga ko‘ra: 

 
-bo‘yicha integral 

 
Van der Korputning 5-darajali bahosiga ko‘ra:  

 
Ikki integralning ko‘paytmasi 

 
Endi -integrallanishni tekshiramiz.  

 
Asosiy o‘sish  bo‘yicha, shuning uchun quyidagini tekshiramiz: 

 
 fazoda radius  ga o‘tish hajm elementi . Shunday qilib, yaqinlashish sharti: 

 

Bizga esa  kerak edi.  da ham  

Demak, 1-teoramaning shartlari faqat 4,5,6,7 karrali maxsuslikka ega bo‘lgan sirtlar uchun o‘rinli. 

Ammo, bu teorema  holi uchun ba’zi shartlarni bajarganda o‘rinli bo‘ladi. Buni quyidagi ikkinchi 

teoremada keltiramiz: 

Teorema 2. Faraz qilaylik,  silliq gipersirt  koordinatalar boshining yetarlicha kichik 

atrifida aniqlangan silliq funksiya grafigi sifatida aniqlangan bo‘lsin, ya’ni: 

 
 funksiya quyidagi shartlarni qanoatlantirsin: 

1.  ya’ni sirtning ikkala bosh egriligi  da nolga teng; 

2.  funksiya koordinatalar boshida  tipidagi maxsuslikka ega. Ya’ni, nol nuqtaning 

yetarlicha kichik atrofida shunday lokal diffiomorfizm  topilib: 

 
U holda nol nuqtaning shunday  zichlik funksiyasi mavjud bo‘lib, ixtiyoriy  zichlik 

funksiyasi uchun 

 
munosabat o‘rinli bo‘ladi. 

Isbot. Sirt o‘lchovining Furye almashtirishi ta’rifiga ko‘ra: 

 
Bu yerda  
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. 

Statsionarlik sharti: 

 
bu yerda,  

 
Kichik  lar uchun  

 
ya’ni statsionar nuqta  tartibda o‘zgaradi. 

Hessian matritsasi: 

. 

Statsionar nuqta yaqinida  

 
Tebranuvchan integralning lokal bahosi: 

 
Bizda: 

 
Demak, 

 
-tik yo‘nalishda  

-gorizontal yo‘nalish    

Yuqoridagilardan quyidagi baho o‘rinli: 

 

 
Demak,   

 

ADABIYOTLAR: 

 

1.  Alimov Sh. A. and Ashurov R.R. , Matematik tahlil, II-qism, Toshkent, "Turon -Iqbol", 2017. 

2. Arkhipov G. I., Karatsuba A. A., Chubarikov V. N.,  Trigonometric integrals. // Math. USSR-Izv. 15 

(2), 211–239 (1980). 

3. Arkhipov G.I., Chubarikov V.N., Karatsuba A.A., Trigonometric sums in number theory and 

analysis. in: de Gruyter expositions in mathematics, vol.39. Berlin 2004, Translated from the 1987 Russian 

orginal. 

4. Arnol’d V. I., Gusein-Zade S. M. , Varchenko V. N.,  Singularities of differentiable maps. The 

classification of critical points, Cauchy and Wave Fronts. Birkhäuser, Boston-Basel-Stuttgart, (1985). 

5. Arnol’d, V.I., Gusein-Zade, S.M. and Varchenko, A.N.,  Singularities of differentiable maps. Vol. II, 

Monodromy and asymptotics of integrals, Monographs in Mathematics, 83.  Birkhäuser, Boston Inc., Boston, 

MA, 1988. 

6. Akramov I. Ibrohimbek , Ikromov A. Isroil A, Estimates for oscillatory integrals with phase having 

 type singularities, // Journal of Mathematical Sciences, September 2024, DOI: 10.1007/s10958-024-

07372-x. 

7. Akramova D.I.,  On estimates for convolution operators.   // Uzbek Mathematical Journal, 2019, 

(4), pp. 12–23. 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  167 
 

8. Akramova D.I., Arnol’dning  tipidagi maxsusligi bilan bog’langan tebranuvchan integrallar 

haqida. // SamSU Scientific journal, 2020, 5 (123), pp. 15–27. 

9. Akramova D.I., Ikromov I.A.,  Randol Maximal Functions and the Integrability of the Fourier 

Transform of Measures. // Mat. Zametki, 2021, 109, (5), pp 643–663. 

10. Akramova D.I., Akramov I.I., Ikromov I.A.,  Estimates for convolution operators related to 

hyperbolic equations. // SamSU Scientific journal, 2016, 3 (97), pp. 6–11. 

11. Akramova D.I., Soleev A., Newton polyhedra in estimates for the Fourier transform of 

characteristic functions and convolution operators. // SamSU Scientific journal, 2022, 3 (133), pp. 20–32. 

12. Akramova D.I. Applications of oscillatory integrals to solutions of generalized hyperbolic 

equations, PhD thesis, SamSU, 2022. 

13. Bourgain, J.,  Estimations de certaines fonctions maximales. C. R. Acad. // Sci. Paris Sér. I Math., 

301 (1985) no. 10, 499–502. 

14. Bergh I. and Löström I., “Interpolation Spaces,” Springer-Verlag, Berlin/Heidelberg/New York, 

1976. 

15. Brenner P, On  estimates for the wave-equation.//  Math. Z.145 (1975), pp. 251–254. 

16. Buschenhenke S., Dendrinos S., Ikromov I.A., Müller D., Estimates for maximal functions 

associated to hypersurfaces in  with height : Part I, //  Trans. Amer. Math. Soc., Volume 372, 2019, 

No. 2, pages 1363-1406. 

17. Carbery, A., Wainger, S. and Wright, J., Singular integrals and the Newton diagram. Collect. 

Math., Vol. Extra (2006), 171–194. 

18. M. A. Chakhkiev. On the exponent of convergence of a special integral of a multidimensional 

analogue of Tarry’s problem. // Izv. Ross. Akad. Nauk Ser. Mat., 67(2):211-224, 2003. 

 

 

 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  168 
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ЛИНЕЙНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА 

ВТОРОГО РОДА ЧЕТВЁРТОГО ПОРЯДКА 
 

Джамалов Cирожиддин Зухриддинович, 

Институт математики имени В.И.Романовского АН РУз 

siroj63@mail.ru  

 Халхаджаев Бахтиёр Батирович, 

    Ташкентский институт менеджмента и экономики 

xalxadjaev@timeedu.uz 
 

Аннотация. В данной статье рассматриваются вопросы корректности одной линейной 

обратной задачи с полунелокальными краевыми условиями для трёхмерного уравнения смешанного 

типа второго рода, четвёртого порядка в параллелепипеде. Для этой задачи  методами Фурье, « -

регуляризации», априорных оценок, последовательности приближений и сжимающихся 

отображений доказаны теоремы существования и единственности  регулярного решения обратной 

задачи в анизотропном пространстве Соболева. 

Ключевые слова: трёхмерные уравнения смешанного типа второго рода четвёртого порядка, 

линейная обратная задача с полунелокальными краевыми условиями, корректность задачи, методы 

Фурье, « -регуляризации», априорных оценок, последовательности приближений и  сжимающихся 

отображений. 
 

TO‘RTINCHI TARTIBLI IKKINCHI TUR ARALASH TURDAGI TENGLAMA UCHUN 

CHIZIQLI TESKARI MASALA 
 

Annotatsiya. Ushbu maqolada parallelepipedda ikkinchi turdagi to'rtinchi tartibli uch o'lchovli 

aralash tipdagi tenglama uchun yarim nolokal chegaraviy shartli chiziqli teskari masalaning korrektlik 

masalalari ko'rib chiqiladi. Furye usuli, « -regulyarizatsiya», aprior baholar, ketma-ket yaqinlashishlar  

va qisqartirib aks ettirishlar usullari yordamida teskari masalaning anizotrop Sobolev fazosida regulyar 

yechimining mavjudligi va yagonaligi teoremalari isbotlangan. 

Kalit so‘zlar: ikkinchi tur to'rtinchi tartibli uch o'lchovli aralash tipdagi tenglama, yarim nolokal 

chegaraviy shartli chiziqli teskari masala, yechimning korrektligi, Furye usuli« -regulyarizatsiya», aprior 

baholar, ketma-ket yaqinlashishlar  va qisqartirib aks ettirishlar usullari. 
 

LINEAR INVERSE PROBLEM FOR A FOURTH-ORDER MIXED-TYPE EQUATION OF 

THE SECOND KIND 
 

Abstract. In this article the correctness of a linear inverse problem with seminonlocal boundary 

conditions for a three-dimensional equation in a parallelepiped is considered. The equation itself is a fourth 

order mixed type equation of the second kind. The existence and uniqueness theorems for a generalized 

solution of the inverse problem in a certain class of integrable functions are proved using the methods of 

Fourier, ” -regularization”, a priori estimates, approximating sequences and contracting mappings. 

Keywords: three-dimensional mixed-type fourth-order equation of the second kind, linear inverse 

problem with semi-nonlocal boundary conditions, well-posedness of the problem, Fourier methods, ” -

regularization”, a priori estimates, sequences of approximations, contracting mappings. 
 

Введение и постановка задачи. В процессе исследования нелокальных задач была выявлена 

тесная взаимосвязь задач с нелокальными краевыми условиями и обратными задачами [3,8-11]. К 

настоящему времени достаточно хорошо изучены обратные задачи для классических уравнений 

математической физики.  [1,4,17,24,25]. Линейные обратные задачи для модельных уравнений 

смешанного типа второго порядка в плоскости изучены в работах А.Г.Меграбова, К.Б.Сабитова и 

их учеников, а для многомерных уравнений смешанного типа второго порядка как первого, так и 

второго рода в ограниченных областях с локальными условиями предложены и изучены в работах 

С.З.Джамалова, С.Г.Пяткова, а с нелокальными краевыми условиями изучены в работах 

С.З.Джамалова, Р.Р.Ашурова  [12-14,21,23]. Прямые задачи для уравнений смешанного типа 

высокого порядка исследовались в работах [6,7,15,27], а обратные задачи для уравнений 

смешанного типа высокого порядка практически не исследовались. Частично восполнить данный 

пробел мы и попытаемся в рамках этой работы.  

mailto:siroj63@mail.ru
mailto:xalxadjaev@timeedu.uz
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В данной работе для исследования однозначной разрешимости  обратных задач для 

трёхмерного уравнения смешанного типа второго рода, четвёртого порядка   в параллелепипеде 

предлагается новый метод, основанный на сведении обратной задачи к прямым полунелокальным 

краевым задачам для  семейства нагруженных  дифференциальных уравнений смешанного типа 

второго рода четвёртого порядка в прямоугольнике.  

Напомним, что нагруженным уравнением принято называть уравнение с частными 

производными, содержащее в коэффициентах или в правой части значения тех или иных 

функционалов от решения уравнения [20],[25]. 

 В трёхмерном параллелепипеде 

(0,1) (0, ) (0, ) (0, ) {( , );0 1; 0 ;0 }G T Q x t x y t T                   

рассмотрим уравнения смешанного типа второго рода четвёртого порядка 

( , , ).Lu Pu Mu Nu x t y                                                        (1) 

Здесь        
4

0

( , ) ; ; ,i

i t xxxx xxtt xx yyyy

i

Pu K x t D u Mu au bu cu Nu u


      

где 
4 4( , ) ( ),K x t K t   

4 4(0) ( ) 0;K K T 
 

, , 0,a b c const 
  

,
i

i

t i

u
D u

t





   ( 0 , 1 , 2 , 3 , 4 ) ,i     

0 .tD u u  

Уравнение (1) относится к уравнениям смешанного типа второго рода, так как на знак функции 

4 ( )K t  по переменной t  внутри отрезка [0, ]T  не налагается никаких ограничений [3-5,9]. 

В дальнейшем будем предполагать, что ( , , ) ( , , ) ( , ) ( , , ),x t y g x t y h x t f x t y      где  ( , , )g x t y    и 

 ( , , )f x t y    заданные функции, а функция ( , )h x t  подлежит определению. 

Линейная обратная задача. Найти функции { ( , , ), ( , )},u x t y h x t  удовлетворяющие уравнению 

(1) в области G , такие, что функция ( , , )u x t y  удовлетворяет следующим краевым условиям:  

0
; 0,1,2p p

t tt t T
D u D u p

 
      (2) 

                   0 1
0;

x x
u u

 
          

0 1
0xx xxx x

u u
 
                     (3) 

         
0 1

0;
y y

u u
 
 

        0
0yy yyy y

u u
 
 

                        (4)                                       
 

 

и дополнительному условию: 

0 0( , , ) ( , ),u x t x t    где  00 ,                      (5) 

 и вместе с функцией ( , )h x t  принадлежит классу  
4,3 4

2 2{( , ) ( ); ( )}.U u h u W G h W Q    

где 3

2

4, ( )W G   анизотропная пространство Соболева с нормой 

4,3 4
22

2 24 3

( ) ( )
1

2
(1 ) ( , ) ,k kW G W Q

k

u u x t




 
      (А)

 

Здесь через 4

2( )W Q обозначено пространства Соболева с нормой  

4
2

22

( )
4

,
W Q

Q

D dxdt



 


 
  

где   это мультииндекс, D   есть обобщённая производная по 

переменным x и t. 

Очевидно, что пространство 3

2

4, ( )W G  с нормой (А) является банаховым пространством [11-14].  

Определение 1. Регулярным решением задачи (1)-(5) будем называть функцию ( , , ) ,u x t y U  

удовлетворяющую уравнению (1) с краевыми условиями (2)-(5)  почти всюду в области G .  

Однозначную разрешимость задачи (1)-(5) докажем с помощью метода Фурье, т.е.  для 

нахождения решения задачи (1)-(5) применим метод Фурье по переменной y . А именно, решение 

задачи (1)-(5) ищем в виде:  

 

1

( , , ) ( , ) ( ),k k

k

u x t y u x t Y y





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 где функции 
2

( ) { sin }k kY y y , ,k

k
   1,2,3,...k   являются решениями спектральной 

задачи уравнения четвёртого порядка  с условиями Дирихле,  то есть 
( ) 4 ,

(0) ( ) 0; (0) ( ) 0

.

IV

k k k

k k k k

Y Y

Y Y Y Y



      

Известно, что система собственных функций { ( )}kY y фундаментальна в пространстве 
2[0, ]L  

и в нём образует ортонормированный базис [16],[22], а функции ( , ); 1,2,3,...ku x t k   подлежат  

определению. 

Будем требовать выполнения следующих условий. 

Пусть все коэффициенты уравнения (1) достаточно гладкие функции в области Q , и пусть 

выполнены следующие условия относительно коэффициентов и правой части уравнения (1) и 

заданной функции 0 ( , )x t . 

Условие 1: 

Нелокальные условия:  
   

4 4(0) ( ); ( ,0) ( , ); 0,2,3,t t i iK K T K x K x T i   для всех  0,1 ,x
 

( ,0, ) ( , , ),g x z g x T z  ( ,0, ) ( , , ).f x z f x T z 
  

Кроме того, пусть выполнены следующие условия для коэффициентов   уравнения (1): 

   1 3, 0, , 0K x t K x t 
 
достаточно большие функции, 3 4 4 3(2 (2 3) 3 ) 0, 0,1,2;tK j K K j         

1 2 2 22 0,tK K K      0 0 1 0,tK K     для любых ( , ) ,x t Q  где 
2

ln 0, 1 .
T

      

гладкость: 0,1

0 0 ,( , , ) ( , ) ( ),x tg x t l g x t C Q   0,1

0 0 ,( , , ) ( , ) ( ),x tf x t l f x t C Q   

3,3 1,3

0 2 2( , ) 0; ( ), ( ).f x t f W G g W G   
 

Условие 2:  
5

0 2 0 0 0 0 0 00 0 1 0 1
( , ) ( ); , 0,1,2,3; 0, 0.p p

t t xx xxt x x x xt T
x t W Q D D p       

    
        

 

Чтобы сформулировать основной результат, необходимо выполнить некоторые формальности 

построения. 

Рассмотрим следы уравнения (1) при 0 :y    
отсюда 

0

4

0 0 0 0 0

1

2
sin ( , ) ( , ) ( , )k k ky

k

Lu P M u g x t h x t f x t   





      

Теперь, учитывая дополнительное условие (5) и то, что 0
0
f , определим  неизвестную 

функцию ),( txh  в виде интеграла:  

 
4

0 0

10

1 2
( , ) ( , )sin ,

( , )
k k k

k

h x t u x t
f x t

 




 
   

 
  

где 0 0 0 0 0 0; ( , , ) ( , );L g g x t g x t   
        0 0 0 0;L P M   

 
4

4 2,2 2

0 0 0 0 , 0 0

0

( , ) ; ,i

i t i x x t x

i

P k x t D M aD bD cD     


     
а для определения функций ( , )ku x t  в 

области (0,1) (0, )Q T    получим  бесконечное число нагруженных систем уравнений смешанного 

типа четвёртого порядка: 

 
4

4

0 0

10

( , )

( , ) 2
[ ( , )sin ] ( )

( , )

k k k k k k

k
m m m k

m

u Pu Mu u g x t

f x t
u x t F u

f x t



 




     

                              (6) 
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с полунелокальними краевыми условиями: 

0
; 0,1,2,p p

t k t kt t T
D u D u p

 
                                      (7) 

0 1
0,k kx x

u u
 
          

0 1
0 .kxx kxxx x

u u
 
                                           (8) 

Основным результатом является следующая теорема: 

Теорема 1. Пусть выполнены вышеперечисленные условия 1 и 2 для коэффициентов уравнения 

(1), и пусть существует  положительное число
 
 ,

 
такое, что для  2

0 03 02 1min{ , , , , , ( ) }a b c


         

имеют место оценки 1

0 31 0,Te    
 3,3

2

2

( )
1,

W G
q M f 

 

где
 

0,1
,

21 2

0 ( )
( ) ,

x t

T

C Q
M e m f    1 2 310m c c c  – коэффициенты теоремы вложения Соболева. Тогда 

существует единственное решение линейной обратной задачи (1)-(5) из указанного класса .U  

Доказательство: 
 

Cначала покажем, что решения задачи (1)-(4) ( , , )u x t y , удовлетворяет дополнительному 

условию (5), т.е. 0 0( , , ) ( , ).u x t x t   

Подходя от обратного, предположим, что 0 0( , , ) ( , ),u x t x t  тогда для функции  

0 0 0 0

1

( , ) ( , , ) ( , ) ( , )sin ( , )k k

k

z x t u x t x t u x t x t  




     в области Q , умножая (6)-(8) на 0sin k  и 

суммируя по k  от 1  до ,  получим следующую задачу: 
4

0

0

0i

i t

i

L z K D z M z


  

                                         

(9)
 

с полунелокальными краевыми условиями: 

 

0
; 0,1,2,p p

t tt t T
D z D z p

 
      (10) 

0 1
0;

x x
z z

 
   

0 1
0 .xx xxx x

z z
 
                         (11) 

 

Теперь докажем единственность решения задачи (9)-(11).     

Для этого рассмотрим тождество  
0 02( , ) 0.t

tL z e z    Интегрируя по частям тождество, 

учитывая условия теоремы 1 и условия (10),(11), получим неравенство  
2

0,z   откуда следует 

( , ) 0,z x t   и задача (9)-(11) имеет  единственное решение;  значит, решение задачи (1)-(4) 

удовлетворяет дополнительному условию (5), т.е.
 0 0( , , ) ( , )u x t x t ,   

2. Семейство нагруженных дифференциальных уравнений пятого порядка с малым 

параметром. 

Разрешимость задачи (6)-(8) докажем методами «  регуляризации», последовательных 

приближений и априорных оценок, а именно – в области (0,1) (0, )Q T   рассмотрим 

полунелокальную краевую задачу для семейства нагруженных дифференциальных уравнений пятого 

порядка (составного типа) с малым параметром:  
2

, 4

, , ,

4

0 , 0 ,

10

( , )

( , ) 2
[ ( , )sin }] ( ),

( , )

k

k k k k k k

k
m m m k

m

u
u Pu Mu u g x t

t

f x t
u x t F u

f x t



   

 

 

 





       



   
                                       (12)                          

с полунелокальними краевыми условиями: 

, ,0
; 0,1,2,3,4,p p

t k t kt t T
D u D u p 

 
                                      (13) 

, ,0 1
0,k kx x

u u  
         , ,0 1

0,k xx k xxx x
u u  

                                  (14) 

где    малое положительное число.  

В дальнейшем при доказательстве корректности задачи (12)-(14) нам понадобятся следующие 

обозначения и вспомогательные леммы.  
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Дальше при доказательстве теоремы 1 и корректности задачи (12)-(14) нам понадобятся 

следующие обозначения и вспомогательные леммы.  

Определим пространства вектор-функций 
2( ) { : ( )}i

i k kW Q W Q    где 

0,1,2,3,4; 1,2,3,...i k  с конечной нормой 

2

2 24 3

( )
1

(1 ) ; 0,1,2,3,4.ik k ki W Q
k

i  




                                       (С) 

Очевидно, что пространство ( )iW Q с определённой нормой (С) является банаховым 

пространством. Из определения пространств  
2( ), 0,1,2,3,4.iW Q i    следует  

4 3 2 1 0( ) ( ) ( ) ( ) ( ).W Q W Q W Q W Q W Q      

 

Через ( )W Q  ниже будем обозначать класс вектор-функций 
1{ ( , )}k kx t 


 таких, что 

1 4{ ( , )} ( )k kx t W Q 

  , 2

1 0{ } ( )k W Q
t

 
 


 и удовлетворяющих соответствующим     условиям (13),(14). 

Определение.  Решением задачи (12)-(14) будем называть вектор-функцию ,{ ( , )}su x t W  , 

удовлетворяющую уравнению (12) почти всюду в области Q . 
 
 

Теперь разрешимость задачи (12)-(14) в области Q  докажем методами последовательных 

приближений [2],[22].   

,

2 ( )

,( ) ( ) ( ) 4 ( )

, , ,

4 ( 1) ( 1)

0 , 0 ,

10

( , )

( , ) 2
[ ( , )sin }] ( )

( , )

k

l

kl l l l

k k k k k

l lk
m m m k

m

u
u Pu Mu u g x t

t

f x t
u x t F u

f x t





   

 

 

 


 




       



   
                             

     (15)                          

с полунелокальними краевыми условиями: 
( ) ( )

, ,0
; 0,1,2,3,4,p l p l

t k t kt t T
D u D u p 

 
                                                          (16) 

( ) ( )

, ,0 1
0,l l

k kx x
u u  

         ( ) ( )

, ,0 1
0,l l

k xx k xxx x
u u  

                                             (17) 

где     1
0, 0,1,2,... , 0.l u


         

В дальнейшем при получении различных априорных оценок мы часто используем неравенство 

Коши с   [12], то есть 
2 1 2, 0; 0; 2 .u u u             

Лемма 1.  Пусть выполнены все условия теоремы 1, тогда для решения задачи (15)-(17) 

справедливы следующие оценки: 
2 2 2 2

( ) ( ) ( ) ( )

, , , ,0 0 0 2
). ( ) (l l l l

k ttt k ttx k ttt kI u u u u const l   




    ,  , k ),  

2
2 ( )

2, ( )

, 4

0

). (

l

k l

k

u
II u const l

t










 


,  , k ).  

Символом (const l ,  , k )  здесь и далее обозначим постоянную, не зависящую от 

, , kl   параметров. 

Доказательство леммы 1. Докажем справедливость оценки I).  

Для  этого рассмотрим тождество:  

    ( ) ( 1)

, ,0

(( ) )

,
0

,2 , 2 ,l ll l

k t

t t

k k tku e F uu ue  

 

 

                             (18) 

 

где постоянную 0   выберем позже. 

В силу условий теоремы 1 и краевых условий (16),(17), интегрированием по частям тождество 

(18) и применяя неравенства Коши с   [12], из тождества (18) легко получить первую априорную 

оценку снизу: 
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2 2 2 2
( ) ( ) ( ) ( ) ( ) ( )

, , , , , 0 ,0 0 0 2
2 ( ) .t l l T l l l T l

k k t k ttt k ttx k txx k

Q

e u u d xdt e u u u e u  

                      (19) 

где 2

0 03 02 1min{ , , , , , ( ) }a b c


         

Далее, применяя неравенство Коши с 


 к тождеству (18), справа сверху получим: 

 

 4
2

( 1) ( )

, , 0

( 1) ( )

, 0 ,

2 2 2 2 21 ( ) 2 2

, 0 0 00 ( ) ( ) 01

21 2 4 3 (

1 ,(

0

0

)

1

1

4

0

( , ) 2
2 ,

( , )

2 ( ),

sin

ˆ3 2 2

2 (1 )

l t l

k k t

l t l

k k k t

l

k k k C Q W Q

l

k k kC Q
k

k
k k

k

F u e u

u e u

u g f T g

c u

f x t
g

f x t

f



 



 







   

 





 

 

 


  







 

 

 

     
 

 

 
     

  



2

1)

1
,

                                       
(20) 

где  0 ( )
2max ( , ) ( 0,4; { , , }i C Q

T K x t i a b c 
;  

8

1 4 3
1

.
(1 )

k

k k

c











      

Объединяя неравенства (19) и (20), получаем: 

 

 4
2

2 2 2 2
( ) ( ) ( ) 1 ( )

, , , 2

2 2 2 22 2

0 0 00 ( ) ( ) 0

221 2 4 ( 1)

(

0 ,0 0

1 )
1

0

, 2

2 2

2 (1 ) ,

ˆ( ) 3

k k C Q W

T

l l l T l

k ttt k t t

Q

s l

k k kC Q

tx k xx k

k

T

u u u

e g

f

e u

e

f T g

c u



 



 







  







 




 







    

    
 

 

                                        (21) 

Применяя теоремы вложения Соболева 
2

2

2 2

2
( ) ( )

ˆ ˆ
С Q W Q

f c f  [17,18] к неравенству (21), получим
 

 

 2 4
2 2

2
2

2 2 2 22 2

2 0 0 00 ( ) ( ) 0

221 2 4 ( 1)

1 2 ,(

2 2 2 2
( ) ( ) ( ) 1 ( )

, , , 0 ,0 0

) 2
1

0 2

2 2

2 (1 ) .

ˆ( ) 3l l l

k k W Q W Q

s l

k k kW Q

T l

k ttt k ttx k txx k

T

T

k

g c f

u

T g

c c f u

u u u e

e

e 



   





 





  

 








 



    

    
 

 

                                         (22) 

 

Учитывая условие теоремы, 1 1

0 03 31 0,T Te e            разделяя неравенства (22) на 

0, 
 
 умножая  

3
41 k и суммируя  по k  от1   до ,  

    
получим первую рекуррентную формулу: 

 4
2

2 2 2 2

2 2 2 2

0

1 2 2

2 0 0 00 2 (

( ) ( ) ( ) ( )

, , , ,0 0 2

2
(

) 0

21 1

2

2

1 2

1)

,2

2 2

.

)

2

( l l l l

k ttt

Q

k t

T

k k W

k

tx k txx k

T l

k

g c f T g

c

u u u u

e

e uc f

   









  





 

 

   

    
 



   

                                    (23) 

        
 

Введём обозначение  4
2

2 2 2 21 2 2

2 0 0 00 2 ( ) 0
2 2k k W Q

T g c f T Ae g      
 

 и, учитывая условия 

теоремы 1 
2 21 1 2

1 2 2 3
2 1,k

T

kc c f q Me f        из рекуррентной формулы (23) получим 

справедливость оценки I). Действительно, для этого в качестве «начального приближения» возьмём 

функцию    ( 1)ˆ 0 .u

  Тогда имеем: 
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 4
2

2 2 2 21 2

,

2 2 2 2
(0) (0) (0) (0)

, , ,0 0 0 2

2

2 0 0 00 2 ( ) 0
2 2 .

( )x

k k W

k

Q

k ttt k tt k txx

T g c f T

u u u u

Ae g

   









  

 

  
 

 
 

Продолжая этот процесс, методом индукции получим первую априорную оценку для любой 

функции  ( )

, , 0l

ku l    

2 2 2 2
( ) ( ) ( ) ( )

, , , ,0
0

0 0 2
( )

1

l l l l

k ttt k ttx t

l

x

k

k

k x k

A
A q

q
u u u u   



 

    


                             (24) 

Теперь докажем справедливость оценки II).  

Для этого рассмотрим тождество: 

 ( ) ( ) ( 1) ( )

, , , ,2 2 ,l t l l t l

k k k k

Q Q

u e Pu d xd t F u e Pu d xdt 

    

        
                               

(25) 

где      

2 ( ) 2 ( ) ( ) ( ) 2 ( )

, , , , ,( ) 2

, 2
2 3 ,

2 16

l l l l l

k k k k tt kl

k

u u u u u
Pu

t t t

    



 
 

   
    

  
 

2 ( )

, ( ) ( ) ( )

, , ,( 2 ).

l

k l l l

k tttt k ttxx k xxxx

u
u u u

t t



  

 
  

 
 

Интегрируя по частям (25), с учётом условий теоремы 1 и краевых условий (16), (17), получим 

слева снизу необходимую вторую оценку:  
2

2 ( )
2,( ) ( ) ( )

, , 0 , 4

0

2 .

l

kl l T T l

k k k

Q

u
u Pu d xd t e e u

t

 

     


    
                              (26) 

Теперь, применяя неравенство Коши с   к правой части тождества (25), нетрудно получить 

справа сверху следующее неравенство: 

 

1 1

1 1

( 1) ( ) 4 ( 1) ( )

, , 0 , 0 , 0

10

2 2 2 2 2 21 ( ) 4 2 2

, 1 0 1 0 01 ( ) ( ) 5 14

2 24 1 2

1 0 ( ) ( )

2
2 2( [ sin ], )

31 15 [ 2 [ ]]

6 (1

l t l l t lk
k k k k k k k

kQ

T l T

k k kC Q C Q

T

kC Q C Q

f
F u e Pu d xdt g u e Pu d xdt

f

e u e g c f f T g

e c f f

 

   

 





 

   

 


   



 

 

        

     





2
4 ( 1)

, 4
1

) ,s l

k k

k

u 






 

       

(27) 

где  11 ( )
2max ( , ) ( 0,4); { , , }i C Q

T K x t i a b c 
 

Объединяя оценки (26) и (27), получим:
 

1 1

1 1

2
2 ( )

2, ( )

0 , 4

0

2 2 2 2 24 2 2

0 1 0 01 ( ) ( ) 5 1

22 24 1 2 4 ( 1)

1 0 ,( ) ( ) 4
1

31

15 [ 2 [ ]]

6 (1 ) .

1
l

k T l

k

T

k kC Q C Q

T s l

k k kC Q C Q
k

u
e u

t

e g f f T g

e c f f u

 









 

  

  






  



  
  

  

   

  





                               (28) 

Применяя теоремы вложения Соболева 1 3
2

2 2

2( ) ( )k kС Q W Q
f c f    к неравенству (28), получим:

 

 

1

1

2
2 ( )

2, 1 ( )

0 , 4

0

2 2 2 2 24 2 2

2 0 1 0 01 ( ) 3 5 1

22 24 1 2 4 ( 1)

1 2 0 ,( ) 3 4
1

31

15 [ 2 [ ]]

6 (1 ) .

l

k T l

k

T

k kC Q

T s l

k k kC Q
k

u
e u

t

e g c f f T g

e c c f f u

 









  

  

  






  



 





   

  





                           (29) 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  175 
 

Разделяя неравенство (29) на 1

0 31 0,Te      умножая 4 3(1 )k и суммируя по k  от1   

до ,   получим вторую рекуррентную формулу: 

1

1

2
2 ( )

2, ( )

, 4

0

2 2 2 2 24 2 2

2 0 1 0 01 ( ) 3 5 1

22 24 1 2 ( 1)

1 2 0 ,( ) 3 4

15 [ 2 [ ]]

6 .

l

k l

k

T

k kC Q

T l

k kC Q

u
u

t

e g c f f T g

e c c f f u















  

 



  












  



                        (30)          

   

Введём обозначение 1

2 2 2 2 24 2 2

2 0 1 0 0 11 ( ) 3 5 1
15 [ 2 [ ]]T

k kC Q
e g c f f T g A       и, учитывая 

условия теоремы 1, что   1

2 2 24 1 2

1 2 0 ( ) 3 3
6 1 ,T

k kC Q
e c c f f q M f        из рекуррентной формулы 

(30), получим справедливость оценки II).  

Действительно, для этого в качестве «начального приближения» возьмём функцию 

   ( 1)

, 0 .ku 

  Тогда для «нулевого приближения» имеем: 

1

2
2 (0)

2 2 2 2 2 2, (0) 4 2 2

, 2 0 1 0 0 11 ( ) 3 5 12

0

15 [ 2 [ ]]
k T

k k kC Q

u
u e g c f f T g A

t

 




  






     


 

Продолжая этот процесс, методом индукции получим вторую априорную оценку для любой 

функции  ( )

, , 0l

ku l    

2
2 ( )

2, ( )

,

0

1
12

0

.
1

l

k l k

k

l

k

u
u

A
A q

qt







 








    

Отсюда, как при доказательстве оценки I), легко получается оценка II). 

Лемма 1 доказана.  

Введём новую функцию из ( )W Q  по формуле  ( ) ( ) ( 1)

, , , ; 0: 0,1,2,3...l l l

k k ku u l        

Тогда для неё справедлива следующая лемма.
 

Лемма 2.  Пусть выполнены все условия теоремы 1. Тогда для функции  ( )

, ( )l

k W Q   

справедливы следующие оценки: 
2 2 2 2

( ) ( ) ( ) ( ) ( )

, , , ,0 0 0 2
). ( ) ,l l l l l

k ttt k ttx k txx kIII u u u u Aq   




     

2
2 ( )

2, ( ) ( )

, 14

0

). .

l

k l l

k

u
IV u A q

t










 


  

 

Доказательство леммы 2. Из (15)-(17) для функции  ( )

, ( )l

k W Q   получим следующую 

задачу: 
2 ( )

,( ) ( ) 4 ( ) 4 ( 1) ( 1)

, 0 , , , 0 ,

10

( , )2
sin ( )

( , )

l

kl l l l lk
k k k k k k k k

k

f x t
L F

t f x t



     


        


 




      


        

     (31)          

с полунелокальными краевыми условиями: 

              
( ) ( )

, ,0
; 0,1,2,3,4,q l q l

t k t kt t T
D D q   

 
                                                    (32) 

( ) ( )

, ,0 1
0,l l

k kx x  
 
     

( ) ( )

, ,0 1
0,l l

k xx k xxx x  
 
                                            (33) 

где   0, 0,1,2,...l   ; 

Следовательно, как и в доказательстве леммы 1, для функции       ( ) ( ) ( 1)

, , , ( )l l l

k k ku u W Q        

получим третью рекуррентную формулу: 
2 2 2 2 2

( ) ( ) ( ) ( ) ( 1)

, , , , ,0 0 0 2 2
( )l l l l l

k ttt k ttx k txx k kq    


    



                                    (34)
 

 и, повторяя рассуждения леммы 1, из (34) получим априорную оценку III). 

Аналогично доказывается оценка IV). Лемма 2 доказана. 
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Теорема 2. Пусть выполнены все условия теоремы 1. Тогда задача (15)-(17) однозначно 

разрешима в ( ).W Q   

Доказательство. Теорему 2 докажем методом сжимающихся отображений [9]. Пусть    

оператор, соответствующий дифференциальному выражению (15) и условиям (16),(17). Обозначим 

через 1



  формальный обратный оператор. Определим в пространстве  ( )W Q  оператор. 
( ) 1 ( 1) ( 1)

, , ,( ) .l l l

k k ku F u Pu   

     

1. Покажем, что оператор P  отображает пространство  ( )W Q   в себя. 

Пусть   ( 1)

, ( , )l

ku W Q R

  , тогда для решения задачи (15)-(17), справедливо утверждение леммы 

1, т.е. справедлива   оценка II).  Отсюда следует, что для любых   1,2,3...l  получаем  ( )

, ( )l

ku W Q  . 

Таким образом,  : ( ) ( ).P W Q W Q  

2. Покажем, что P – сжимающий оператор.  

Пусть    ( ) ( 1)

, ,, ( ).l l

k ku u W Q 

   Рассмотрим новую функцию      ( ) ( ) ( 1)

, , ,

l l l

k k ku u     , для неё 

справедливо утверждение леммы 2, т.е. справедлива оценка IV), т.е. 
2

2 ( )
2, ( ) ( )

, 14

0

). .

l

k l l

kIV A q
t











 


 

Таким образом, P - сжимающий оператор. Теперь по известному принципу сжимающих 

отображений  задача (15)-(17) имеет единственное решение, принадлежащее пространству ( ),W Q  при 

0  . Отсюда имеем ( )

, ,

l

k ku u  при l  [6-8,11,12]. 

3. Семейство нагруженных дифференциальных уравнений смешанного типа второго рода, 

четвёртого порядка. 

Теперь докажем однозначную разрешимость задачи (6)-(8). При этом семейство нагруженных 

дифференциальных уравнений пятого порядка составного типа (12) с условиями (13),(14) используем 

в качестве  «  регуляризирующего» уравнения  для уравнения (6) с условиями (7),(8) [3,4-12]. 

Пусть  , ( )ku W Q   при фиксированном 0   есть единственное решение задачи (12)-(14).  

Тогда при 0   справедливо неравенство IV). По теореме о слабой компактности [13,24], из 

ограниченной последовательности  ,ku   можно извлечь слабо сходящуюся подпоследовательность 

функции  , jku  , такую, что , jk ku u   слабо в ( )W Q . Покажем, что предельная функция ( , )ku x t  

удовлетворяет уравнению (8) почти всюду в ( )W Q .  Действительно, так как подпоследовательность 

 , jku   слабо сходится в ( )W Q , а оператор  линеен, то имеем:    

2

,

, , 0 ,

4

, ,

( ) ( ) [ ( ) ( )] ( )

( ) [ ( ) ( )].

j

j j j

j j

k

k k k k k k j k k

k k k k k

u
u F u u F u F u F u L u u

t

u u F u F u



  

 






          



   

          (35)   

Переходя к пределу в  (35) при 0j  , получим  ( ).k ku F u   Значит функция ( , )ku x t   будет 

единственным решением задачи (6)-(8) из ( )W Q .  

Тем самым доказана теорема 2. Теперь докажем теорему 1. 

Так как выполнены все условия теоремы-1, используя равенства Парсеваля – Стеклова [11-13] 

для решения задачи (6)-(8), получим решение задачи (1)-(5) из указанного класса .U  
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Аннотация.В данной работе для уравнения смешанного типа дробного порядка в смысле 

Капуто со спектральным параметром изучена краевая задача в прямоугольной области. Установлен 

критерий единственности решения поставленной задачи. Само решение построено в виде суммы 

ортогонального ряда, и показана его сходимость в классе регулярных решений данного уравнения. 

Ключевые слова: уравнение смешанного типа с дробными производными, задача Дирихле, 

ортогональной ряд, критерий единственности, существование. 

 

BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION OF MIXED TYPE WITH A 

FRACTIONAL ORDER AND A SPECTRAL PARAMETER 

 

Annotatsiya. Ushbu ishda Kaputo ma’nosida spektral parametrga ega bo‘lgan kasr tartibli aralash 

tipdagi tenglama uchun to‘g‘ri to‘rtburchak sohada qo‘yilgan chegaraviy masala o‘rganilgan. Qo‘yilgan 

masala yechimining yagonaligi mezoni o`rganilgan. Masalaning yechimi ortogonal qator yig‘indisi 

ko‘rinishida topilgan va uning klassik yechimlar sinfida yaqinlashishi ko`rsatilgan. 

Kalit so‘zlar: kasr hosilali aralash tipdagi tenglama, Dirixle masalasi, ortogonal qator, yagonalik 

mezoni, mavjudlik. 

 

BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION OF MIXED TYPE WITH A 

FRACTIONAL ORDER AND A SPECTRAL PARAMETER 

 

Abstract. This paper investigates a boundary value problem in a rectangular domain for a mixed-type 

fractional-order equation in the sense of Caputo with a spectral parameter. A criterion for the uniqueness of 

the solution to the stated problem is established. The solution is constructed in the form of a sum of an 

orthogonal series, and its convergence in the class of regular solutions of the given equation is proved. 

Keywords: mixed-type equation with fractional derivatives, Dirichlet problem, orthogonal series, 

uniqueness criterion, existence.  

 

Введение. Отметим, что дифференциальные уравнения в частных производных, содержащие 

производные дробного порядка, имеют важные приложения в различных областях [1]–[6], и   

полученные результаты, безусловно, представляют большое значение из-за их новизны. Такие 

дифференциальные уравнения в частных производных невозможно классифицировать из-за наличия 

дробной производной, так как не удаётся написать соответствующее характеристическое уравнение. 

В связи с этим предлагаю следующее определение классификации таких уравнений по типам. 

Определение 1. Дифференциальные уравнения в частных производных, содержащие 

производную дробного порядка  , назовем параболическим, эллиптическим и гиперболическим, 

если при каком-то значении  из промежутка его изменения они становятся, соответственно, 

дифференциальным уравнением параболического, эллиптического и гиперболического типов  по 

существующей классификации дифференциальных уравнений в частных производных. 

Определение 2. Если в различных частях области задания дифференциальное уравнение в 

частных производных, содержащее дробную производную, принадлежит различным типам в 

указанном выше смысле, то такое дифференциальное уравнение следует называть уравнением 

смешанного типа в этой области. 
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В данной работе изучается краевая задача для нагруженного уравнения смешанного типа 

дробного порядка со спектральным параметром в прямоугольной области. Установлен критерий 

единственности решения задачи. Само решение построено в виде суммы ортогонального ряда, и 

показана его сходимость в классе регулярных решений данного уравнения. 

Формулировка задачи. 

Рассмотрим уравнение:  

2

0 1

2

0 2

,    ( , ) , 0 1,
0

    ( , ) , 1 2

c y
xx

xx c y

u D u u x y
Lu

u D u u x y





 

 

     
  

    

   (1) 

в прямоугольной области   ( , ) : 0 , ,x y x l p y q      где 0, 0,p q  ,l   заданные 

действительные числа,  1
( , ) : 0 , 0 ,x y x l y q      

  
 2
( , ) : 0 , 0 ,x y x l p y        

 

 ( , ) : 0 , 0 ,J x y x l y   
1 2

,J   а 
0c y

D  оператор дробного порядка в  смысле Капуто  [2, с. 

14] , [7,c. 38] :
 

  ( )
( ) ( ) ( ), 1 , ,

n n n
c ay ayD f y sign y a D f y n n n

 



                      (2) 

здесь  ( )ayD g y   интегро-дифференциальный оператор Римана – Лиувилля порядка  C  : 

 

1

( ) ( )
, 0,

( ) ( )

( )                ( ),             0,

( ) ( ), 0.

ay

n
n n

ayn

ysign y a g t dt

y ta

D g y g y

d
sign y a D f y

dy





















   


 



 


                                           (3) 

Класс 
kC . Через   ( )kC M

обозначим класс функций, непрерывных вместе со своими частными 

производными по    до k  го порядка включительно в области M . 

Задача T . Требуется найти функции ( , )u x y со следующими свойствами:  

2

0 1 0 21 2

1

1 2

( , ) ( ) ( ), ( ), ( ),

        ( , ) ( ), ( , ) ( ) ;

x c cy y

y y

u x y C C D u C D u C

y u x y C J u x y C J

 



        

   
                                

(4) 

1 2
( , ) 0, ( , ) ;Lu x y x y  

                                                                      
(5)

 
(0, ) 0, ( , ) 0, ;u y u l y p y q                                                              

(6)
 

( , ) ( ), 0 ;u x p x x l                                                                          
(7)

 
1

0 0
( , 0) ( , 0), ( ,0) , lim ( , ) lim ( , ), ( ,0) ,y yy y

u x u x x J y u x y u x y x J

 
     

                     
(8)

 

где ( )x  заданная достаточно гладкая функция.  

Построение решения задачи T
 

Для получения решения задачи T мы используем метод разделения переменных. Решение 

задачи будем искать в виде: 

( , ) ( ) ( ).u x y X x Y y                                                                     (9) 

Подставляя (9)  в  (5) и  (6) относительно ( )X x , получим известную  спектральную задачу: 
2( ) ( ) 0, 0 ,X x X x x l                                                               (10) 

(0) 0, ( ) 0X X l  .                                                                  (11) 

Собственные функции и значения задачи (10) и  (11) определяются формулами: 

2
( ) , , .

k k k

k
X x sin x k

l l


                                                     (12) 

Система функций (12) полна и образует ортонормированный базис в   2
L 0,l  [8-9]. 

Следуя работам [10-11], введём функции: 
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( ) ( , ) ( ) .
0

k k

l
u y u x y X x dx                                                    (13) 

Рассмотрим вспомогательные функции: 

( ) ( , ) ( ) .
l

k k
u y u x y X x dx








                                                    (14) 

В силу (6) и (14)  из  (1) получим: 

0 0
( ) ( , ) ( ( ,

2
) )c cy xxk ky k

l l

u y u x y X x dxD D su x y dxin x
l

 
 

 


 

     

2 ( , ) ( , ) (
2 2 2

, )
l

x k

l l

k k
u x y dx u x ysin x sin x cos x

l l l
u x y





 


  





 

    

2 2( , ) ( ,
2

)
2

.
k k k

l l

u x y dsin x sin x
l l

x u x y dx
 

 
 

 

   при   0,y                      (15)                    

00

2
( ) ( , ) ( ) ( , )xxkc y ky

l l

k
u y u x y X x dx u x y dxD D sin xc

l


 



 

 
 

     

2 ( , ) ( , ) (
2 2 2

, )x k k

l l

k

l

u x y dx u x ysin x sin x cos x
l l l

u x y




 

 

  


 

     

2 2( , ) ( ,
2

)
2

.
k k k

l l

u x y dsin x sin x
l l

x u x y dx
 

 
 

 

     при   0,y                       
(16) 

Переходя к пределу при 0    в (15) и (16) с учетом (6), (13), имеем 

2 2 2

0
( ) ( ) 0, 0 , ,

k kc y k k k
u y u yD y q


        

                                     
(17) 

2

0
( ) ( 0, .) 0,c y kk k

u yD pu y y k N      
                                                 

(18) 

Общие решения уравнений (17) и (18) имеют вид [1, стр.102] 

2

,1

2 2

,2 ,1

( ) , 0 ,
( )

( ( ) ) ( ( ) ), 0,

k k

k

k kk k

a E y y q
u y

c yE y b E y p y




 
 



 

   
 

                                       

(19)
 

где   

,
0

( ) , , , , Re( ) 0, Re( ) 0
( )

n

n

z
E z z C

n
     

 




   

 
                        (20) 

- функция типа Миттаг-Леффлера [12, c.117],  z  гамма-функция Эйлера, 

, ,
k k k

a b c  произвольные постоянные. 

Тогда функции (19) по построению удовлетворяют в областях ( 1,2)j j   уравнению (5) и 

нулевым граничным условиям (6) при любых ,
k k

a b  и nc . Следовательно, в силу линейности и 

однородности уравнения (5) сумма частных решений:  

2

,1
1

1

2 2
,2 ,1

     ( ) ( ),      0 ,    

( , )

( ) ( ) ( ), 0,

k k k
k

k
k k k k k

a E y X x y q

u x y

c y E y b E y X x p y




 

 



 









   


 
       
 


            (21)          

также удовлетворяет уравнению (5) и граничным условиям (6). 

Теперь находим коэффициенты   ,
k k

a b  и nc . В силу (8) с учётом  

,1 ,2
(0) 1, (0) 1,E E   ,     

, ,
( ) 1 ( ) ( ), 0, 0E z z E z      


       

из  (21)  получим: 
2 2( ) , ( ) .

k k k kk k
a c b c                                                (22) 

Используя разложения в ряд по синусам функции 
1

( ) ( )n n
n

x X x 



   с учетом (7) и (22) из (21)   

при  0p y    имеем: 
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2 2 2 2

,2 ,1
( ) ( ) ( ) ,

k kk k k k
c p E p E p 

          
 

                                       (23) 

где 

0

( ) ( ) .
l

k k
x X x dx  

                                                                             
(24) 

Из равенств (22) и (23) находим коэффициенты   ,
k k

ba  и 
k

c : 

2( ) ( , ) , ( , ) ,
k k k k k k kk

a b p c p                                                      (25) 

при условии, что при всех k N  
2 2 2

,2 ,1
( , ) ( ) ( ) ( ) 0.

k k k k
p p E p E p 

          
                                     

(26) 

Подставляя (25) в (21), находим формальное решение задачи T в виде: 

2

,1
1

( )2
( , ) ( ) , 0 ,

( , )

k
k

k
k

k
u x y E y sin x y q

l p l




  









   


                                    

(27) 

1

2
( , )

( , )

k

k
k

u x y
l p








 


 

2 2 2

,2 ,1
( ) ( ) ( ) , 0.

k k k

k
y E y E y sin x p y

l

 

 


          
 

                     (28) 

Единственность решения задачи T  

Теорема 1. Если существует решение ( , )u x y задачи  T ,  то  оно единственно только тогда, 

когда выполнено условие  (26)  при всех  k N . 

Доказательство теоремы 1. Пусть ( ) 0x  и  ( , ) 0
k

p    при всех  .k N  Тогда из формул 

(19),  (24), (25) и  (13) имеем: 

0

( , ) ( ) 0
l

k
u x y X x dx 

                                                                         
(29) 

при всех  k N   и  ,y p q  . Отсюда в силу полноты системы (12) в пространстве  2
0,L l  

следует, что ( , ) 0u x y   почти всюду на  0,l
 
при любом  ,y p q  . Поскольку в силу условия (4) 

функции ( , )u x y непрерывны на  , то ( , ) 0u x y   в  . Следовательно, решение задачи 

T единственно при выполнении условия (26). 

Теорема 1 доказана. 

Пусть k m N   и при некоторых , ,p     нарушено условие (26), т.е. ( , ) 0m p   . Тогда 

задача T в случае, когда  ( ) = 0x  имеет нетривиальное решение:   

 2

,1

2 2 2

,2 ,1

            ( ) ( ), 0 ,
( , ) =

( ) ( ) ( ) ( ), 0,

m m m

m

m m m m m

d E y X x y q
u x y

d y E y E y X x p y




 

 

 

   

    



                         

(30) 

здесь  0md  произвольная постоянная. 

В силу ( , ) 0m p    заключаем, что построенная функция (30) удовлетворяет условиям (6), (8) 

и   

( , ) 0, 0 .mu x p x l                                                                   
(31)   

 

Существование решения задачи T  

Решение задачи T  при условии (26) получено формально в виде сумм ортогональных рядов 

(27) и (28). Поскольку  ,
k

p   входит в знаменатель коэффициентов этих рядов, то для 

обоснования существования решения задачи T  необходимо показать существование чисел , ,p q    

и k таких, что при больших k выражение  ,
k

p  отделено от нуля с соответствующей 

асимптотикой. В противном случае возникает вопрос о существовании нулей  ,
k

p  . Отметим, что 
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функция ,
( )E z   при 0z   положительна, а при 0z   имеет конечное число нулей[12, стр.224-225], 

[2, стр. 93-99].   В силу этого ( , )
k

p 
  

может иметь нули. Чтобы оценить их количество, изучим 

поведение ( , )
k

p  при больших k >>1. 

Для этого воспользуемся асимптотической формулой 
,

( )E z  функций Миттаг-Леффлера 

(смотрите [12], страница 134, формула (2.24)) для больших значениях аргументов  z : 

 1

,
1

( ) , 1, arg , ( 2; ).
( )

kp p

k

z
E z O z p z

k
      

 


 


      

                    

(32)   

Из (32) найдём оценки при больших (  1)k k   для функций: 

 2

12

,1 2 4 2 2

1 1
( ) ,

(1 )

k

k

k k k

w p
E p O

p p p




   




   

 
    

                                    

(33)   

 2

22 2

,2 2

1
( ) ,

(2 )

k

k k

k

w p
p E p

p



 
 


 

 
  

 
                                            

(34)   

где                        2

1 2

1 1
,

(1 )
m

m

w p O
p






 

 
   
          

 2

2 2

1 1
,

(2 2 )
k

k

w p O
p






 

 
   
   

 
причём  

   2 2

1 1 2 2
,m mw p C w p C                                               (35)   

 при этом константы 1
C  и 

2
C  зависят только от    . 

Лемма. Пусть 1 2     1.и p   Тогда существует постоянная 
0 0 1
 ( ,  )p p    такая, что 

при 
0

p p  справедлива оценка:    

0
( , )  0, 1,

k
p k                                                                (36) 

где константа 
0 0
 ( )p  не зависит от k

 ,   1

0
( ) 1 2 (2 ).p p     

Доказательство.Установим оценку снизу величины 
2 2 2

,2 ,1
( , ) ( ) ( ) ( ).

k k kk
p p E p E p 

         
                                      

(37)   

В силу  (33) и  (34) из (37)  при  1p   имеем: 

 
 

2

2 2

11 2 1

1 1
( , )

(2 )

k

k k

k

w p
p w p

p p p





  


 

  

 
    

    

.                       (38) 

Принимая во внимание равенство (38) и неравенство (35) заключаем, что существует 

постоянная 
0
( ) 1z p  , что при  

0
( )z z p  справедлива оценка: 

2 2
1 11 1 1

( )1 1 1
( )

2 (2 )

w z C
w z C

z p z p p     

 
    

  
,                                 (39) 

где   2 1

0 2 1
, ( ) max 1, 2 (2 )( .

k
z p z p C p C         

Так как 1  , то существует 
0 0 1
 ( ,  )p p    такое, что при 

0
p p имеем 2

1 0
( ).p z p   Тогда  

для всех 1k   имеем 2

1 0
( ).

k k
z p z z p    Следовательно, в силу (39) из (37) получим  

0
( , )  0.

k
p      

Лемма доказана. 

Теорема 2. Пусть выполнено условие Леммы и пусть ( )x  удовлетворяет условиям 

 4( ) 0, ,x C l  (0) ( ) (0) ( ) 0l l         . Тогда существует единственное решение задачи T и 

это решение определяется рядами  (27) и  (28), которые сходятся абсолютно и равномерно по 

 0,x l и по  ,t p q  .    

Теорема 2 доказывается методом, указанным в работах [5], [13-14].  
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Annotatsiya. Mazkur maqolada ko‘p o‘zgaruvchili funksiyalarning karrali va takroriy limitlari 

orasidagi o‘zaro munosabatlar chuqur tahlil qilingan. Ishda karrali limit mavjud bo‘lganda takroriy 

limitlarning mavjudligi va ularning qiymatlari bilan bog‘liq teoremalar va ushbu teoremalardan kelib 

chiqadigan natijalar keltirilgan hamda qat’iy matematik isbotlar orqali asoslab berilgan. Shuningdek, 

takroriy limitlar mavjud bo‘lib, karrali limit mavjud bo‘lmagan holatlar hamda aksincha vaziyatlar misollar 

yordamida ko‘rsatib berilgan. Keltirilgan misollar orqali ko‘p o‘zgaruvchili funksiyalar limitlarini 

hisoblashda karrali va takroriy limit tushunchalarining bir-biriga bog‘liq emasligi yoki muayyan shartlar 

ostida tenglashishi yoritilgan. 

Kalit so‘zlar: ko‘p o‘zgaruvchili funksiya, karrali limit, takroriy limit, limitning mavjudligi, ketma-

ketliklar usuli, matematik analiz, limitlar nazariyasi, funksiyalar limitlari, oliy matematika. 

 

ВЗАИМОСВЯЗЬ КРАТНЫХ И ПОВТОРНЫХ ПРЕДЕЛОВ ФУНКЦИЙ МНОГИХ 

ПЕРЕМЕННЫХ 

 

Аннотация. В данной статье проведён углублённый анализ взаимосвязи между кратными и 

повторными пределами функций многих переменных. В работе приведены теоремы, связанные с 

существованием повторных пределов при наличии кратного предела, а также результаты, 

вытекающие из этих теорем, которые обоснованы строгими математическими доказательствами. 

Кроме того, с помощью примеров показаны случаи, когда повторные пределы существуют, тогда 

как кратный предел не существует, и наоборот. На основе приведённых примеров раскрывается, 

что при вычислении пределов функций многих переменных понятия кратного и повторного пределов 

могут быть как независимыми друг от друга, так и совпадать при выполнении определённых 

условий. 

Ключевые слова: функция многих переменных, кратный предел, повторный предел, 

существование предела, метод последовательностей, математический анализ, теория пределов, 

пределы функций, высшая математика. 

 

ON THE RELATIONSHIP BETWEEN MULTIPLE AND ITERATED LIMITS OF 

FUNCTIONS OF SEVERAL VARIABLES 

    

Abstract. This article provides an in-depth analysis of the relationship between multiple and iterated 

limits of multivariable functions. The paper presents theorems concerning the existence of iterated limits 

under the condition that a multiple limit exists, along with results derived from these theorems, which are 

justified through rigorous mathematical proofs. In addition, examples are given to illustrate cases in which 

iterated limits exist while the corresponding multiple limit does not, as well as the converse situations. The 

presented examples demonstrate that, in the process of computing limits of multivariable functions, the 

concepts of multiple and iterated limits may be independent of each other or may coincide under certain 

conditions. 

Keywords: multivariable function, multiple limit, iterated limit, existence of limits, sequence method, 

mathematical analysis, limit theory, limits of functions, higher mathematics. 

   

Kirish. Matematik analiz fanida ko‘p o‘zgaruvchili funksiyalar nazariyasi muhim bo‘limlardan biri 

bo‘lib, unda funksiyaning limitlari, uzluksizligi va differensiallanuvchanligi kabi tushunchalar asosiy o‘rin 

tutadi. Ayniqsa, ikki va undan ortiq o‘zgaruvchiga bog‘liq funksiyalarning limitlarini o‘rganish nazariy va 

amaliy jihatdan murakkab masalalardan hisoblanadi. Bunday funksiyalar uchun limit tushunchasi bir nechta 

yondashuvlar orqali aniqlanadi, jumladan, karrali limit va takroriy limit tushunchalari keng qo‘llaniladi.  

Ko‘p o‘zgaruvchili funksiyalar limitlari masalasida asosiy muammolardan biri karrali va takroriy 

limitlar orasidagi o‘zaro bog‘liqlikni aniqlashdan iboratdir. Ma’lumki, ayrim hollarda takroriy limitlar 
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mavjud bo‘lsa-da, karrali limit mavjud bo‘lmasligi mumkin yoki aksincha, karrali limit mavjud bo‘lib, 

takroriy limitlar mavjud bo‘lmasligi holatlari uchraydi. Shu sababli bu ikki tushunchaning o‘zaro 

munosabatlarini aniq shartlar asosida tahlil qilish matematik analiz nazariyasini chuqurlashtirishda muhim 

ahamiyat kasb etadi. 

Masalaning qo‘yilishi. Mazkur maqolada ko‘p o‘zgaruvchili funksiyalar uchun karrali va takroriy 

limitlarning mavjudligi, ularning tengligi hamda bir-biridan farq qiladigan holatlari batafsil o‘rganiladi. Ishda 

karrali limit mavjud bo‘lgan sharoitda takroriy limitlarning mavjudligi va ularning qiymati bilan bog‘liq 

teoremalar keltirilib, qat’iy matematik isbotlar orqali asoslab beriladi. Shuningdek, misollar yordamida 

karrali va takroriy limitlar o‘rtasida bog‘liqlik mavjud bo‘lmagan holatlar ham ko‘rsatib beriladi. 

Asosiy natija.  

1-teorema. Agar  

1)  da  funksiyaning (karrali) limiti:  

 
mavjud; 

2) har bir tayinlangan  da quyidagi 

 
limit mavjud boʻlsa, u holda 

 
takroriy limit ham mavjud boʻlib, 

 
boʻladi. 

Isboti:  funksiya  da karrali 

 
limitga ega boʻlsin. Limitning ta’rifiga koʻra,  olinganda ham, shunday  topiladiki, ushbu 

 
toʻplamning barcha  nuqtalari uchun 

 
boʻladi.  

Endi teoremaning 2) shartini inobatga olib,  oʻzgaruvchining  tengsizlikni 

qanoatlantiradigan qiymatini tayinlab,  da  tengsizlikda limitga oʻtib 

 
ni topamiz. Demak,  olinganda ham shunday  topiladiki,  boʻlganda  

 
boʻladi. Bu esa 

 
boʻlishini bildiradi. Keyingi munosabatdan 

 
boʻlishi kelib chiqadi. ■ 

2-teorema. Agar  

1)  da  funksiyaning karrali limiti:  

 
mavjud; 

2) har bir tayinlangan  da quyidagi 

 
limit mavjud boʻlsa, u holda 



MATHEMATICS  

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2025/12 (129)  186 
 

 
takroriy limit ham mavjud boʻlib, 

 
boʻladi. 

Isboti:  funksiya  da karrali 

 
limitga ega boʻlsin. Limitning ta’rifiga koʻra,  olinganda ham, shunday  topiladiki, ushbu 

 
toʻplamning barcha  nuqtalari uchun 

 
boʻladi.  

Endi teoremaning 2) shartini inobatga olib,  oʻzgaruvchining  tengsizlikni 

qanoatlantiradigan qiymatini tayinlab,  da  tengsizlikda limitga oʻtib 

 
ni topamiz. Demak,  olinganda ham shunday  topiladiki,  boʻlganda  

 
boʻladi. Bu esa 

 
boʻlishini bildiradi. Keyingi munosabatdan 

 
boʻlishi kelib chiqadi. ■ 

Ushbu yuqoridagi ikkita teoremadan quyidagi natija kelib chiqadi: 

Natija: Agar bir vaqtning oʻzida 1 va 2-teoremalarning shartlari bajarilsa, u holda 

 
boʻladi. 

1-misol. Ushbu 

 
funksiyaning  nuqtadagi karrali va takroriy limitlarini hisoblang. 

Yechish: Avvalo karrali limitni topamiz: 

 

 

 
Soʻngra  almashtirish bajaramiz. U holda 

 
Demak,  
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Endi  

 
funksiyaning takroriy limitlarini hisoblaymiz. 

 

 
Demak,  

 
funksiyaning takroriy limitlari  ga teng ekan. Ya’ni karrali va takroriy limitlar bir-biriga teng ekan. 

2-misol. Quyidagi 

 
funksiyaning  nuqtadagi karrali va takroriy limitlarini hisoblang. 

Yechish: Eng avvalo karrali limitni topamiz: 

 
Demak, 

 
Endi  

 
funksiyaning takroriy limitlarini hisoblaymiz: 

 

 

 
Demak,  

  

funksiyaning takroriy limitlari  ga teng ekan. Ya’ni karrali va takroriy limitlar bir-biriga teng ekan. 

Ba’zi bir koʻp oʻzgaruvchili funksiyalarning limitini topayotgan vaqtda karrali limit mavjud, ammo 

takroriy limitlar mavjud boʻlmaydi yoki aksincha takroriy limitlar mavjud boʻladi, karrali limitlar esa yoʻq. 

Bunda karrali limitni topishni takroriy limitni topishga aloqasi boʻlmaydi yoki aksincha. Shuning uchun, biz 

quyida karrali va takroriy limitlarning bogʻliq emasligiga doir bir nechta misollar koʻrib chiqamiz: 

3-misol. Ushbu 

 
funksiyaning  nuqtada karrali va takroriy limitlari mavjudmi? 

Yechish: Takroriy limitlarni topishni qaraylik: 
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Demak, berilgan funksiyaning takroriy limitlari 0 ga teng ekan. Ravshanki,  

. 

Shuni ta’kidlash lozimki, bu funksiyaning ( ) nuqtadagi karrali limiti mavjud emas. Haqiqatdan 

ham, ( ) nuqtaga intiluvchi 

 

 
ketma-ketliklar mos ravishda 

 

 
boʻlib, 

 

 
boʻladi. Bu esa berilgan funksiyaning karrali limitining mavjud emasligini koʻrsatadi. 

4-misol. Ushbu 

 
funksiyaning  nuqtadagi karrali va takroriy limitlari mavjudmi? 

Yechish: Eng birinchi karrali limit mavjudligini tekshiramiz. Aytaylik, ( ) nuqta (0,0) nuqtaga 

tekislikdagi  toʻgʻri chiziq boʻyicha intilsin. U holda 

 
boʻladi. Demak,  nuqta turli toʻgʻri chiziqlar boʻyicha (0,0) ga intilganda limitning qiymati turlicha 

boʻladi. Bu hol qaralayotgan limitning mavjud emasligini bildiradi. 

Demak, 

 
funksiyaning  nuqtadagi karrali limiti mavjud emas ekan. 

Endi takroriy limitlarini topamiz: 

 

 
Demak, berilgan funksiyaning takroriy limitlari 0 ga teng ekan. Ravshanki,  

. 

5-misol. Ushbu 

 
funksiyaning  nuqtada karrali va takroriy limitlari mavjudmi? 

Yechish: Eng avvalo, takroriy limitlarni qaraylik: 
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Demak, berilgan funksiyaning takroriy limitlari ikkalasi ham 0 ga teng ekan. Ya’ni, 

. Shuni ta’kidlash lozimki, bu funksiyaning ( ; ) nuqtadagi 

karrali limiti mavjud emas. Haqiqatdan ham,  nuqtaga intiluvchi 

 

 
ketma-ketliklar uchun mos ravishda 

 

 

 

 
boʻladi. Bu esa berilgan funksiyaning karrali limitining mavjud emasligini koʻrsatadi. 

Xulosa. Mazkur maqolada ko‘p o‘zgaruvchili funksiyalar uchun karrali va takroriy limit 

tushunchalari, ularning mavjudligi hamda o‘zaro bog‘liqlik masalalari batafsil tahlil qilindi. Tadqiqot 

davomida karrali limit mavjud bo‘lgan sharoitda takroriy limitlarning mavjudligi va ularning qiymati karrali 

limitga teng bo‘lishi bilan bog‘liq teoremalar keltirildi hamda qat’iy matematik isbotlar orqali asoslab 

berildi. Shuningdek, maqolada karrali va takroriy limitlar o‘rtasida bevosita bog‘liqlik mavjud bo‘lmagan 

holatlar ham aniq misollar yordamida ko‘rsatildi. Xususan, ayrim funksiyalar uchun takroriy limitlar mavjud 

bo‘lsa-da, karrali limitning mavjud emasligi yoki aksincha holatlar yuz berishi mumkinligi yoritildi. Bu 

holatlar ko‘p o‘zgaruvchili funksiyalar limitlarini hisoblashda faqat takroriy limitlarga tayangan holda 

umumiy xulosa chiqarish har doim ham to‘g‘ri bo‘lmasligini ko‘rsatadi. 

Olingan natijalar ko‘p o‘zgaruvchili funksiyalar limitlari nazariyasini chuqurroq anglashga xizmat 

qiladi hamda matematik analiz fanining nazariy asoslarini boyitadi. Tadqiqot natijalari oliy ta’lim 

muassasalarida “Matematik analiz” fanini o‘qitishda, xususan, karrali va takroriy limitlar mavzusini 

tushuntirishda metodik jihatdan foydali bo‘lishi mumkin. Kelgusida ushbu masalalarni yuqori tartibli 

limitlar, uzluksizlik va differensiallanuvchanlik bilan bog‘liq holda o‘rganish ilmiy jihatdan istiqbolli 

yo‘nalishlardan biri hisoblanadi. 
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Аннотация. В работе рассматриваются прямая начально-краевая задача и обратная задача 

определения коэффициента при младшем члене для многомерного уравнения с дробной производной 

Герасимова–Капуто. Устанавливается единственная разрешимость прямой задачи, и выводятся 

априорные оценки её решения в весовых функциональных пространствах. Полученные оценки 

являются ключевым инструментом при исследовании обратной задачи. Показано, что обратная 

задача сводится к эквивалентному нелинейному интегральному уравнению. Для доказательства 

существования и единственности решения данного уравнения используется принцип неподвижной 

точки. Полученные результаты могут быть применены при анализе обратных задач для уравнений 

дробной диффузии и способствуют развитию теории уравнений с дробными производными. 

Ключевые слова: дробная производная, производная Герасимова–Капуто, многомерное 

уравнение, уравнение диффузии, начально-краевая задача, обратная задача, определение 

коэффициента, единственная разрешимость, априорные оценки, весовые пространства, нелинейное 

интегральное уравнение, принцип неподвижной точки, функция Грина. 
 

KASR TARTIBLI HOSILALI DIFFERENSIAL TENGLAMADA NOL TARTIBLI HAD 

OLDIDAGI KOEFFITSIENTNI ANIQLASH MASALASI 
 

Annotatsiya. Mazkur ishda Gerasimov–Kaputo turidagi kasr tartibli hosilaga ega bo‘lgan ko‘p 

o‘lchovli tenglama uchun to‘g‘ri boshlang‘ich-chegaraviy masala hamda pastki had oldidagi koeffitsientni 

aniqlashga doir teskari masala o‘rganiladi. Avvalo, to‘g‘ri masalaning yagona yechimga ega ekanligi 

asoslanadi va uning yechimi uchun og‘irlikli funksional fazolarda aprior baholar olinadi. Ushbu baholar 

teskari masalani tadqiq etishda muhim rol o‘ynaydi. Teskari masala mos keluvchi ekvivalent nochiziqli 

integral tenglamaga keltiriladi. Olingan integral tenglamaning yagona yechimga ega ekanligi harakatsiz 

nuqta prinsipi yordamida isbotlanadi. Natijalar kasr tartibli diffuziya tenglamalarining teskari masalalarini 

o‘rganishda nazariy ahamiyatga ega. 

Kalit so‘zlar: kasr tartibli hosila, Gerasimov–Kaputo hosilasi, ko‘p o‘lchovli tenglama, diffuziya 

tenglamasi, boshlang‘ich-chegaraviy masala, teskari masala, koeffitsientni aniqlash, yagona yechim, aprior 

baholar, og‘irlikli fazolar, nochiziqli integral tenglama, harakatsiz nuqta prinsipi, Green funksiyasi. 
 

THE PROBLEM OF DETERMINING THE ZERO-ORDER COEFFICIENT IN A 

DIFFERENTIAL EQUATION WITH A FRACTIONAL DERIVATIVE 
 

Abstract. This paper studies a direct initial-boundary value problem and an inverse problem of 

determining the coefficient of the lower-order term for a multidimensional equation with the Gerasimov–

Caputo fractional derivative. The unique solvability of the direct problem is proved, and a priori estimates of 

its solution are obtained in weighted functional spaces. These estimates play a crucial role in the analysis of 

the inverse problem. It is shown that the inverse problem can be reduced to an equivalent nonlinear integral 

equation. The existence and uniqueness of the solution to this integral equation are established by applying 

the fixed point principle. The obtained results are of theoretical importance for the study of inverse problems 

for fractional diffusion equations and contribute to the development of fractional differential equation 

theory. 

Keywords: fractional derivative, Gerasimov–Caputo derivative, multidimensional equation, diffusion 

equation, initial-boundary value problem, inverse problem, coefficient identification, unique solvability, a 

priori estimates, weighted spaces, nonlinear integral equation, fixed point principle, Green function. 
 

Введение и постановка задачи. Дробные дифференциальные уравнения являются 

обобщением дифференциальных уравнений до произвольного (нецелого) порядка. Эти уравнения 

вызывают значительный интерес в прикладных науках благодаря своей способности моделировать 

сложные явления. Конвективно-диффузионный перенос играет важную роль во многих процессах 

тепло- и массообмена. Уравнение диффузии с конвективным членом служит математической 
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моделью для его описания. Введение дробного интегро-дифференцирования в уравнение переноса 

позволяет более адекватно описывать физические процессы, происходящие в пористых средах. 

Следует также отметить, что эти уравнения отражают нелокальные связи в пространстве и времени с 

ядрами памяти степенного вида. 

В данной работе рассматривается начально-краевая задача для дифференциального уравнения с 

дробной производной 

 
с начальными условиями 

 
и граничными условиями 

 
где ,  — ограниченная -мерная область с гладкой границей  

 
— самосопряжённый дифференциальный оператор эллиптического типа, то есть такой, что во 

всей области  выполняются условия: 

 
  — заданные функции,  — фиксированное число. 

Обратная задача. Определить , если известно дополнительное условие относительно 

решения задачи (1) – (3)  

 
где  и  — известные гладкие функции. 

Создателем теории дробного интегро-дифференцирования является Ж. Лиувилль. В 1832 году в 

своей исторической работе он предложил дробное интегрирование функций. В настоящее время 

дробные интегралы и производные носят имена выдающихся математиков XIX века Б. Римана и Ж. 

Лиувилля (дробное интегро-дифференцирование Римана–Лиувилля). Существует несколько 

различных способов обобщения понятия дробной дифференциации, но все они совпадают с понятием 

обычной производной в случае натурального порядка. Возможно, наиболее часто используется 

дробная производная Герасимова–Капуто. Что касается первого применения этой производной в 

механике, то оно было предложено российским учёным А. Герасимовым в работе. Фактически А. 

Герасимов использовал дробную производную, аналогичную капутовской, в задачах вязкоупругости 

за 20 лет до Капуто. 

Существует обширная математическая литература, посвящённая обратным задачам для 

классических дифференциальных уравнений и интегро-дифференциальных уравнений второго 

порядка параболического типа. Наиболее часто изучаются линейные обратные задачи для источника 

и нелинейные обратные задачи для коэффициентов с различными типами начально-краевых условий 

(прямая задача) и условий переопределения. В этих работах авторы обсуждают единственную 

разрешимость задач и условную устойчивость их решений, а также численные методы решения таких 

задач. 

В направлении дробных уравнений отметим монографию, которая отражает основные подходы 

к изучению различных прямых задач для уравнений дробной диффузии и уравнений диффузии–

волны (смотрите также обширную библиографию по данному вопросу). В настоящее время 

коэффициентные обратные задачи для дробных диффузионных уравнений изучены мало. Отметим 

лишь линейные задачи определения источника и нелинейные задачи определения коэффициентов с 

различными типами условий переопределения, когда прямая задача представлена задачей Коши и 

начально-краевой задачей (смотрите, например, и приведённые там ссылки). Основные результаты 

этих работ теоремы существования и единственности, а также устойчивость решения задачи 

определения реакционного коэффициента в уравнении диффузии с дробной производной по времени. 

Основная цель данной работы — вопрос единственного определения коэффициента  при 

младшем члене уравнения (1) при дополнительном условии (5), заданном относительно решения 
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задачи (1)–(3). Следует отметить, что, в отличие от вышеупомянутых работ, рассматриваемое здесь 

уравнение (1) содержит как классическую, так и дробную производные. Заметим, что для уравнения 

(1) в случае  с оператором дробного Римана–Лиувилля в задача Коши исследовалась с 

использованием фундаментального решения. Уравнение (1) в одномерном случае описывает 

химический процесс переноса неподвижного растворённого вещества. 

Исследование прямой задачи 

Теорема 1.  Пусть  и выполняются условия 

  и, кроме того,  при , где 

; 

  и, кроме того,  при 

, где ; 

Коэффициенты  обеспечивают существование классических собственных функций 

оператора , то есть принадлежат классам  и удовлетворяют условиям 

эллиптичности (5) в  (см. ).Тогда существует единственное регулярное решение прямой задачи (1) 

– (3). 

Доказательство. Будем формально искать общее решение смешанной задачи (1)–(3) в виде 

ряда 

 
где  — собственные функции спектральной задачи: 

 

 
Классическими собственными функциями задачи (7) (или оператора  называются такие 

тождественно ненулевые функции , которые удовлетворяют следующим условиям: 

1) являются непрерывными в замкнутой области ; 

2) имеют непрерывные производные до второго порядка внутри области ; 

3) для некоторого  удовлетворяют внутри  уравнению 

 
4) обращаются в нуль на границе  области . 

Значения , при которых существуют собственные функции, называются собственными 

значениями задачи (7). 

Умножив обе части уравнения (1) на функцию , приходим к следующему обыкновенному 

дифференциальному уравнению. 

 
где 

 
Если условие (2) умножить скалярно на , то получим следующее. 

 
где 

 
Таким образом, мы получили обыкновенные дробные дифференциальные уравнения (8) для 

неизвестных функций  с начальными условиями (9). Для их решения формально применим 

преобразование Лапласа. Тогда получаем следующее выражение: 
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где 

 
Решая уравнение (10), получаем: 

 
Теперь из функции (11) возьмём обратное преобразование Лапласа. Для этого рассмотрим 

следующее выражение: 

 
Теперь вышеуказанное выражение при условиях  запишем в следующем 

удобном виде: 

 
Используя формулу, применим обратное преобразование Лапласа: 

 

 
Аналогично, возьмём обратное преобразование Лапласа для следующих функций: 

 

 
Опираясь на известную теорему о преобразовании Лапласа свёртки двух функций, приходим к 

следующему формальному решению задач (8) и (9): 

 

 
где введены обозначения: 

 

 
Покажем, что ряды (13) и (14) для каждого  при  сходятся абсолютно и 

равномерно и определяют непрерывные функции  и . Для этого, используя формулу, 

выразим трёхпараметрическую функцию Миттага–Леффлера через функцию Фокса  следующим 

образом: 
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Имеем следующее утверждение: 

Лемма 1.  Если , то для функции  и её целых и дробных производных 

справедлива следующая оценка:  

 

 

 
Доказательство. Сначала докажем, что функциональный ряд  сходится. Для этого 

рассмотрим  — функцию Фокса. Возможные особенности для  могут возникать только при , 

получаем 

 
Так как  является аналитической функцией на интервале , имеем следующую 

оценку: 

 
В результате, принимая во внимание (15), приходим к следующей асимптотической оценке для 

функции  

 
Аналогично, получаем асимптотическую оценку для функции : 

 
Докажем существование решения интегрального уравнения (12) в пространстве  

методом последовательных приближений. Для этого уравнения рассмотрим на области  

последовательность функций: 

 
где 

 

 

 
Получаем следующие оценки: 

 

 
Аналогично 

 

 
Для произвольного  имеем: 
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Из приведённых оценок следует, что ряд 

 
сходится равномерно на . Действительно, (22) можно мажорировать на  сходящимся 

числовым рядом следующим образом: 

 

 
Теперь вычислим дробную производную : 

 

 
В данном случае имеем: 

 

 

 
Далее вычислим дробную производную второго слагаемого в правой части формулы (23): 

 

 

 

 
Таким образом, получаем окончательный вид функции  

 
Аналогично вышеизложенному, получаем оценки для функции : 

 

 

 

 
где 
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Оценка функции  следует из уравнения (8). Лемма 1 доказана. 

Выше мы показали, что интегральное уравнение (12) имеет непрерывное решение. Теперь 

можно показать, что функция , построенная в виде ряда (6), является классическим решением 

задачи (1)-(3), как это было сделано: 

 
На основании Леммы 1 можно заключить, что первый ряд в правой части (24) является 

абсолютно и равномерно сходящимся, а второй ряд, согласно Лемме 5 из , также является абсолютно 

и равномерно сходящимся. 

Далее, формально дифференцируя почленно ряд в формуле (6), получаем: 

  (25) 

Как и выше, на основании Леммы 1 из , первый ряд правой части (25) является абсолютно и 

равномерно сходящимся, а второй ряд, согласно Лемме 5, также абсолютно и равномерно сходится. 

Отсюда следует, что сумма ряда (6) удовлетворяет уравнению (1) и условиям (1) – (3). Теорема 1 

доказана. 

Выведем теперь оценку нормы разности между решением исходного интегрального уравнения 

(12) и решением этого уравнения с возмущёнными функциями ,  и . Пусть  — решение 

интегрального уравнения (12), соответствующее функциям ,  и , тогда имеем: 

  (26) 

Вычитая уравнения (12) и (26) друг из друга и вводя обозначения , 

,  и , получаем интегральное уравнение: 

 

 
Применяя метод последовательных приближений к уравнению (27) по схеме: 

 

 
получаем следующую оценку для  и : 

 
что будет использовано в следующем разделе. 

Обратная задача 

Умножив обе части уравнения (1) на  и проинтегрировав по переменной  по области , 

получим: 

 

 
Если воспользоваться дополнительным условием (5), то уравнения (28) примут вид: 

 
где 
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Применим интегрирование по частям в интеграле уравнения (29) и получим: 

 
С учётом условий (3) имеем: 

 
В силу этого уравнение (29) примет вид: 

 
Разложим функцию  в системе  в ряд Фурье и получим равенство: 

 
или 

 
где 

 
Используя (12), перепишем уравнение (30) в следующем виде: 

 

 
Решая это уравнение относительно  получаем: 

 
где 

 

 
Введём оператор  действующий по формуле: 

 
Тогда уравнение (31) можно записать в более компактной форме: 

 
Положим 
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где  

Теорема 2.  Пусть выполняются условия 

  и, кроме того,  при , где ; 

  и, кроме того,  при , 

где ; 

Коэффициенты  обеспечивают существование классических собственных функций 

оператора , то есть принадлежат классам  и удовлетворяют условиям 

эллиптичности (4) в  (см. ). 

 , , 

  для всех     

Тогда существует число  такое, что для любого  уравнения (32) имеет 

единственное решение в шаре  где 

 . 

Доказательство. Рассмотрим шар в пространстве  

 
радиуса  с центром в точке . 

Выполняются следующие неравенства: 

 
Пусть функция . Докажем, что при соответствующем выборе  оператор  

на множестве  является сжимающим. Сначала покажем, что при правильном выборе 

 оператор  отображает шар в себя, то есть . 

Для этого, используя оценки, справедливые для , 

 
имеем 

 

 

 
Пусть  есть положительный корень уравнения 

 
Тогда для любого  оператор  отображает шар в себя, то есть из  

следует . 

Теперь рассмотрим две функции  и , принадлежащие шару , и оценим 

расстояние между их образами  и  в пространстве . Функция , 

соответствующая , удовлетворяет интегральному уравнению (26) с функциями  и 
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. Составив разность  с использованием уравнений (12), (26) и затем, 

применяя (33), оценим её норму: 

 

 

 

 
Пусть  — положительный корень уравнения 

 

 
Очевидно, что функции  и  неотрицательны и возрастают, причём  , и 

по этой причине всегда существуют константы  и , такие что  и . Тогда 

при  оператор  сжимает расстояние между элементами . 

Следовательно, если выбрать , то оператор  является сжимающим в шаре 

. Тогда, в соответствии с теоремой Банаха, оператор  имеет единственную неподвижную 

точку в шаре , то есть существует единственное решение уравнения (32). Теорема 2 

доказана. 
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Abstract. This paper is devoted to the investigation of direct and inverse problems for a class of 

semilinear diffusion equations with generalized Caputo-type fractional derivatives under initial–boundary 

and overdetermination conditions. The generalized fractional derivative is represented in convolution form 

with a weakly singular kernel, covering classical, multiterm, distributed-order, and tempered fractional 

derivatives as special cases.  For the direct problem, the existence and uniqueness of a weak solution are 

established using Rothe’s time discretization method combined with energy estimates discrete Gronwall-type 

inequalities. Uniform a priori estimates are derived for the discrete solutions, which ensure convergence of 

the Rothe approximations to a variational solution of the continuous problem. For the inverse problem, an 

integro-differential diffusion equation with an unknown time-dependent convolution kernel is considered, 

subject to an additional integral observation representing the total population density. By transforming the 

inverse problem into an equivalent coupled system for the state variable and the unknown kernel, the 

existence and uniqueness of the solution pair are proved within appropriate functional spaces. The obtained 

results provide a rigorous theoretical foundation for the analysis of semilinear diffusion models with memory 

effects and fractional dynamics. 

Keywords: generalized fractional diffusion equation, Caputo-type derivative, integro-differential 

equation, Rothe method, inverse problem, existence and uniqueness. 
 

ИССЛЕДОВАНИЕ ПРЯМЫХ И ОБРАТНЫХ ЗАДАЧ ДЛЯ ПОЛУЛИНЕЙНОГО 

УРАВНЕНИЯ ДИФФУЗИИ С НАЧАЛЬНО-ГРАНИЧНЫМИ УСЛОВИЯМИ И УСЛОВИЯМИ 

ПЕРЕОПРЕДЕЛЕНИЯ 
 

Аннотация. Настоящая статья посвящена исследованию прямых и обратных задач для 

класса полулинейных диффузионных уравнений с обобщёнными дробными производными типа 

Капуто при начально–краевых и переопределённых условиях. Обобщённая дробная производная 

задаётся в свёрточной форме с слабо сингулярным ядром, что позволяет охватить классические, 

многотерминные, распределённого порядка и темперированные дробные производные в качестве 

частных случаев. Для прямой задачи доказаны существование и единственность слабого решения с 

использованием метода Роте на основе дискретизации по времени в сочетании с энергетическими 

оценками и дискретными неравенствами типа Гронуолла. Для дискретных решений получены 

априорные равномерные оценки, обеспечивающие сходимость приближений Роте к вариационному 

решению непрерывной задачи. Для обратной задачи рассматривается интегро-дифференциальное 

диффузионное уравнение с неизвестным временным свёрточным ядром, при этом учитывается 

дополнительное интегральное наблюдение, представляющее собой общую плотность популяции. 

Путём сведения обратной задачи к эквивалентной связанной системе для состояния и неизвестного 

ядра доказаны существование и единственность пары решений в соответствующих 

функциональных пространствах. Полученные результаты создают строгую теоретическую основу 

для анализа полулинейных моделей диффузии с эффектами памяти и дробной динамикой. 

Ключевые слова: обобщённое дробное диффузионное уравнение, производная типа Капуто, 

интегро-дифференциальное уравнение, метод Роте, обратная задача, существование и 

единственность. 
 

BOSHLANG‘ICH-CHEGARAVIY VA QO‘SHIMCHA SHARTLAR BILAN YARIM 

CHIZIQLI DIFFUZIYA TENGLAMASI UCHUN TO‘G‘RI VA TESKARI MASALALARNI 

TADQIQ QILISH 

 

Annotatsiya. Mazkur maqola umumlashgan Caputo turidagi kasr tartibli hosila ishtirokidagi 

yarimchiziqli diffuziya tenglamalari uchun to‘g‘ri va teskari masalalarni tadqiq etishga bag‘ishlangan. Kasr 

mailto:jonibekjj@mai.ru
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tartibli hosila kuchsiz singulyar yadrolar orqali o’rama ko‘rinishda aniqlanib, u klassik, ko‘p hadli, 

taqsimlangan tartibli hamda temperlangan kasr hosilalarni o‘z ichiga oladi. To‘g‘ri masala uchun Rothe 

usuliga asoslangan vaqt bo‘yicha diskretizatsiya yordamida yechimning mavjudligi va yagonaligi 

isbotlanadi. Diskret masala uchun energiya baholari olinib, diskret Gronvall tengsizliklari yordamida Rothe 

yaqinlashuvlarining uzluksiz masalaning variatsion yechimiga yaqinlashishi ko‘rsatiladi. Teskari masalada 

esa vaqtga bog‘liq noma’lum konvolyutsion yadroni aniqlash masalasi qo‘shimcha integral kuzatuv sharti 

asosida ko‘rib chiqiladi. Masala holat funksiyasi va noma’lum yadrodan iborat ekvivalent bog‘langan 

sistemaga keltirilib, u uchun yechimning mavjudligi va yagonaligi mos funksional fazolarda isbotlanadi. 

Olingan natijalar xotirali va kasr tartibli dinamikaga ega diffuziya modellarining nazariy tahlili uchun 

muhim asos yaratadi. 

Kalit so‘zlar: kasr tartibli diffuziya tenglamasi, umumlashgan Caputo hosilasi, integro-differensial 

tenglama, Rothe usuli, teskari masala, mavjudlik va yagonalik. 

 

Introduction. Diffusion processes play a fundamental role in various fields of science and 

engineering, ranging from heat and mass transfer to population dynamics. In many realistic scenarios, the 

dynamics are not purely local but involve memory effects, which can be modeled using fractional derivatives 

in time. Semilinear diffusion equations with fractional time derivatives have received significant attention in 

recent years due to their ability to capture anomalous diffusion phenomena and nonlocal temporal behavior 

[1,4]. 

A central problem in this context is the investigation of direct and inverse problems for semilinear 

fractional diffusion equations. The direct problem concerns the existence and uniqueness of solutions given 

initial and boundary data, whereas the inverse problem typically aims at identifying unknown source terms 

or convolution kernels from additional measurements, such as integral observations over the spatial domain. 

Inverse source problems for time-fractional diffusion equations have been studied by Slodička and Šišková 

[1], where the reconstruction of the source term was addressed in the presence of semilinearity and fractional 

dynamics. 

The Rothe method, originally introduced by Rothe [3] and further developed in [2], is a powerful 

time-discretization technique for proving existence and uniqueness of solutions to evolution equations, 

particularly for parabolic and fractional problems. This method reduces the continuous problem to a 

sequence of elliptic problems at discrete time levels, allowing rigorous energy estimates and compactness 

arguments to establish convergence to a variational solution. Applications of the Rothe method to semilinear 

parabolic equations with convolution-type terms and integral overdetermination have been explored by De 

Staelen and colleagues [4,7], providing both theoretical and numerical frameworks for kernel reconstruction. 

Moreover, semilinear problems with memory-dependent terms frequently lead to integro-differential 

formulations, where the unknown convolution kernel must be identified from additional global 

measurements. Accurate reconstruction in such cases requires careful error analysis and stability estimates 

[4,7], highlighting the importance of Lipschitz continuity and boundedness assumptions in proving well-

posedness. Comprehensive treatments of nonlinear partial differential equations and functional analysis 

techniques that underpin these results can be found in [5,6]. 

Recent advances in the theory and numerical analysis of time-fractional diffusion equations have 

further emphasized the importance of accurately recovering unknown coefficients, source functions, and 

convolution kernels from additional integral or overdetermination data [8-15]. In particular, [8,11,15] 

established rigorous theoretical results for the existence and uniqueness of solutions to inverse source and 

kernel determination problems in bounded domains. Subsequent works [9,11] focused on numerical methods 

for solving these inverse problems, including schemes for recovering two unknowns simultaneously in 

semilinear or integro-differential settings. Moreover, studies on inverse coefficient problems with periodic 

boundary and integral overdetermination conditions [11,14] highlighted the role of boundary observations 

and integral measurements in stabilizing the solution and ensuring uniqueness. These contributions provide a 

solid foundation for extending the Rothe method to more general semilinear fractional diffusion models with 

memory effects, where both analytical proofs and numerical implementations are crucial for understanding 

and simulating the underlying dynamics. 

Motivated by these studies, the present work investigates direct and inverse problems for a class of 

semilinear diffusion equations with generalized Caputo-type fractional derivatives, incorporating initial–

boundary and overdetermination conditions. We employ the Rothe method to establish existence and 

uniqueness of weak solutions for both the direct and inverse problems. The inverse problem focuses on 
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recovering an unknown time-dependent convolution kernel from integral observations, thereby extending 

existing results to a more general fractional and semilinear setting. 

Formulation of problem 1. We focus on the following initial–boundary value problem for a 

semilinear diffusion equation in the domain  involving a generalized fractional derivative: 

 
(1) 

 (2) 

 (3) 

where, the generalized Caputo fractional derivative of a function  is commonly represented in 

convolution form as: 

 
(4) 

Let  denote the generalized kernel of the fractional derivative, which satisfies the following 

conditions: 

a) a singularity at  (i.e., they blow up at ), 

b) be nonnegative and monotonically decreasing for , 

c) be integrable over a finite interval , and their derivatives are locally integrable on . 

We list some kernels  that satisfy conditions a),b) and c): 

Classical Caputo Fractional Derivative:  

Multiterm Caputo Fractional Derivative:   

Distributed Order Caputo Fractional Derivative:  

This extension considers a distribution  over different fractional orders. 

Tempered Caputo Fractional Derivative:   

Here, 

 
where  denotes the unit outward normal vector to . 

 is the Laplace differential operator with domain . We associate a bilinear form with 

the Laplace differential operator as follows 

 
Definition 1.  By a weak solution of problem (1)-(3), we mean a function  such that 

1.  

2.  has a strong derivative  

3.  in  

4. the following equality holds for any for any  

 

 
(5) 

The relation (5) represent the variational formulation of (1)-(3). 

We make the following assumptions to prove our main result: 

(A1) , with  for , where  are constants, 

(A2) , 

(A3) , and , 

(A4)  is a globally Lipschitz continuous function in all variables, 

(A5) . 

Using these properties, during the estimation of the function , we derive the following relations 

that hold for the second term of (5). 
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 (6) 

and 

 (7) 

Let  be a real Hilbert space with scalar product  and the corresponding norm . 

Lemma 1 (see [1, Lemma 2.1])  Assume that ,  If 

 such that  then 

 

 
for any  

Investigation of the problem 1. The existence of the solution is shown by Rothe’s time-discretization 

method. The time interval  is divided into  equidistant subintervals  with length  

The approximation of a function  at time  is denoted by . Moreover, we approximate the 

time derivative at time  by the backward Euler difference, i.e. 

 
Finally, the time-discrete convolution is defined as follows 

 
We define 

 
It is notice that the above definition allows blow-up of the kernel function  at . We can calculate 

that 

 
Similarly, we can also write 

 

(8) 

We approximate problem (5) and (6) at time  as follows: 

 (9) 

The equation (9) is linear in  . Therefore, for a given , we  solve (9). After that, we 

increment  to  and repeat the process. 

Lemma 2.  Let conditions (A1)-(A4) be met. Then for each  there exists a unique  

 solving (9). 

Proof. The relation (9) can be rewritten as 

 

 
The left-hand side defines a continuous and coercive bilinear form in . If 

 belong to , then the right-hand side represents a linear and bounded functional on 
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. By applying the Lax-Milgram theorem from the theory of linear elliptic partial differential equations, 

we conclude the existence and uniqueness of  in . 

Some energy estimates.  The following two lemmas are required to ensure the existence of a solution 

to (5) and to prove the convergence of approximations towards this solution. 

We introduce the following notation: 

 
Lemma 3.  Let the assumptions of (A1)-(A4) be fulfilled. Then there exist positive constants  and  

such that for any  and every  the following relation hold 

 
Proof. Set  in (9) and sum the result up for  to have 

 

 

(10) 

Using (8) and Lemma 1 we see that 

 

 
It follows from (7) that 

 
Using Cauchy, Young’s inequalities and the Trace theorem, we can estimate the first term on the right-

hand side of (10) 

 

 
But owing to assumption (A4), for the next terms on the right-hand side of (10), we have that 

 

 
Putting all estimates together we arrive at 
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hence, applying Gronwall’s lemma in discrete form for fixing small  we get for  

that 

 
We denote by 

 
Lemma 4.  Let (A1)-(A5) are met. Then there exist positive constants  and  such that for any 

 we have 

 
The proof is analogous to that of Lemma 3. 

Rothe method and existence of the problem solution.  We  introduce the following piecewise linear 

Rothe functions in time  

 

 
and 

 

Analogously, we define for the functions  

Using these so-called Rothe’s functions, variational system (9)  can be rewriten on the whole time 

frame as (for ) 

 (11) 

Now, we are in a position to prove the existence of a variational solution to (5). 

Theorem 1 (Existence of a solution).  Suppose (A1)-(A5)  are met. Then there exists a solution  to  

(5) obeying  with  

Proof. We define the Rothe’s approximation  and corresponding step functions  

 

 

Lemma 3, 4 say that  Due to the compact embedding 

 we may invoke [[2], Lemma 1.3.13] to claim the existence of 

 which is time-differentiable in  and a subsequence of 

 such that 

 
It has been proven in [1] that  satisfies the variational problem (5) for a uniformly elliptic operator. 

Therefore, we leave the proof to the reader. 
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Theorem 2 (uniqueness).  Suppose that the conditions of (A1)-(A5) are fulfilled. If problem  (5) has a 

solution, then this solution is unique. 

Proof. The existence of a solution follows from Theorem 1. Now we prove the uniqueness of a 

solution. We suppose that  be the weak solutions of (1)-(3). Then we know that  solve 

the variational problem . Then, the difference  is  satisfying 

 

 
(12) 

Integrating equation (12) with respect to time over  taking .  

 because of  we have 

 

 
(13) 

First, we estimate the lower bound on the left side of the above equation. Hence, using Lemma 4.2.1 

and (A1), we get that 

 

 
Then we estimate the upper bound on the left side of the above equation. As we know, we have 

 from the Theorem 2 so  is bounded. In addition, we can get rid of that last 

term on the right-hand side of (13) because  is nonnegative. Therefore, using the Cauchy and Young’s 

inequalities, and combining the global Lipschitz continuity of  we arrive at 

 

 
Assembling these estimates, we obtain the following. 

 

Fixing a sufficiently small positive , applying the Gronwall lemma, we obtain  

a.e. in . Differentiating with respect to  gives that  a.e. in . 

Formulation of the problem 2. We are concerned with the following initial–boundary value problem 

for a semilinear integro-differential diffusion equation with a generalized fractional derivative 

 (14) 

 (15) 

 (16) 

where the generalized Caputo fractional derivative of a function  is commonly represented in 

convolution form as (4), with the kernel satisfying conditions (a)-(c) in Section 1. 

the asymmetric elliptic operator with space-time dependent coefficients is defined by 

 
(17) 

and 

 
Moreover, the boundary operator  is defined by 
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where  is the unitary outer normal vector of . 

For convenience, we introduce the bilinear form  associated with the differential operator  as 

follows 

 

 
i.e. 

 
The missing time-convolution kernel  will be recovered from the following integral-type 

measurement 

 
(18) 

which represents the population density over the domain  at time  

For the convenience, we introduce the notation  and get following equation from 

(14) 

 (19) 

After that, we will investigate recovering  functions from the inverse problem 

(19),(15),(16),(18). 

By integrating equation (19) over the domain , applying Green’s formula, and considering condition 

(18), we obtain the following result: 

 (20) 

Definition 2. By a weak solution of problem (19),(15),(16),(18), we mean a function  

such that 

1.  

2.  has a strong derivative  

3.  in  

4. the following equality holds for any for any  

 

 
(21) 

The relations (20) and (21) represent the variational formulation of (19),(15),(16),(18). 

We use the following assumptions to prove our main result: 

(B1)  

(B2)  

(B3)  

(B4)  is a globally Lipschitz continuous function in all variables, 

(B5)  

We assume that the coefficients of the elliptic operator satisfy the following conditions: 

 
(22) 

 
(23) 

 
(24) 

The existence and uniqueness of the solution to problems (19), (15), (16), and (18) are proved by the 

Rothe method in a manner similar to the previous problem. Therefore, we omit the proof of existence and 

uniqueness for this problem. 

Theorem 3. (Existence of a solution).  Suppose (B2)-(B5) and (22)-(24) are met. Then there exists a 

solution  to (20) and (21) obeying  with  
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Theorem 4. (Uniqueness of a solution).   Assume that  and 

 The function  is supposed to be Lipschitz continuous in all variables. Then problem (21), (20) 

has at most one solution . 
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Abstract. This work discusses the general algorithm for constructing weighted optimal quadrature 

formulas. Initially, the form of the norm for the error functional of the quadrature formula is determined. 

Subsequently, a system of linear algebraic equations is derived to find the coefficients that minimise this 

norm. To solve this system using the Sobolev method, a discrete analogue of a known differential operator is 

employed. Finally, an analytical expression for the coefficients of the optimal quadrature formula is 

obtained. 

Keywords: Hilbert space, optimal quadrature formula, error functional, extremal function, differential 

operator, optimal coefficients. 

 

HILBERT FAZOSIDA VAZNLI OPTIMAL KVADRATUR FORMULALAR QURISHNING 

UMUMIY ALGORITMI 

 

Annotatsiya. Ushbu ishda vaznli optimal kvadratur formulalarni qurishning umumiy algoritmi 

muhokama qilinadi. Bunda dastlab kvadratur formulaning xatolik funksionalining normasining ko’rinishi 

topiladi. So’ngra normaga minimum qiymat beruvchi koeffitsiyentlarni topish uchun chiziqli algebraik 

tenglamalar sistemasi olinadi. Ushbu sistemani Sobolev usulida yechish uchun ma’lum differensial 

operatorning diskret analogidan foydalaniladi. Optimal kvadratur formulaning koeffitsiyentlarining analitik 

ko’rinishi topiladi. 

Kalit so‘zlar: Hilbert fazosi, optimal kvadratur formula, xatolik funksionali, ekstremal funksiya, 

differensial operator, optimal koeffitsiyentlar. 

 

ОБЩИЙ АЛГОРИТМ ПОСТРОЕНИЯ ВЗВЕШЕННОЙ ОПТИМАЛЬНОЙ 

КВАДРАТУРНОЙ ФОРМУЛЫ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ 

 

Аннотация. В данной работе рассматривается общий алгоритм построения взвешенных 

оптимальных квадратурных формул. Вначале определяется вид нормы для функционала 

погрешности квадратурной формулы. Затем выводится система линейных алгебраических 

уравнений для нахождения коэффициентов, минимизирующих эту норму. Для решения этой системы 

методом Соболева применяется дискретный аналог известного дифференциального оператора. В 

итоге получено аналитическое выражение для коэффициентов оптимальной квадратурной 

формулы. 

Ключевые слова: гильбертово пространство, оптимальная квадратурная формула, 

функционал погрешности, экстремальная функция, дифференциальный оператор, оптимальные 

коэффициенты. 

 

Introduction. Many practical problems are modelled by differential equations, integral equations, or 

integro-differential equations. Their solutions are expressed as integrals of known functions. Usually, 

calculating these integrals accurately is either very difficult or impossible. Therefore, quadrature formulas 

are used to compute integrals with high precision. In this work, we present a general algorithm for 

constructing an optimal quadrature formula via the Sobolev method, grounded in variational principles. 

We consider the following quadrature formula 

mailto:bssamandar@gmail.com
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0

1

0
( ) ( )d ( ),

N

p x x x C x 


 


                                         (1) 

where ( )p x  is a non-negative weight function defined in the interval [0,1] , C  are the coefficients 

and x  are nodes of the quadrature formula. Weighted quadrature rules are useful because they can manage 

the problematic behavior of ( )p x  by including it in the weight function. If you design a rule that accounts 

for ( )p x , you can get fast convergence as long as ( )x  is smooth. You can also use the same rule for 

different ( )x , as long as ( )p x  does not change. 

Many scientific studies have focused on developing optimal quadrature formulas with a weight 

function ( )p x  in works [1–4], with the weight function 
2( ) i xp x e   , which is highly oscillatory, using 

Sard’s approach [5–9] developed these formulas for numerically integrating Fourier integrals in Hilbert and 

Sobolev spaces and applied them to reconstruct computed tomography images. 

Here functions ( )x  belong to the linear space 
( , 1)

2 (0,1)m mW 
 which is defined as follows (see 

[10,11]) 
( , 1) ( 1) ( )

2 2(0,1) { :[0,1] |  is abs. cont, and (0,1)}.m m m mW L       

The inner product of two functions ( )x  and   in the space 
( , 1)

2 (0,1)m mW 
 is defined as 

1
( ) ( 1) ( ) ( 1)

0
, ( ( ) ( ))( ( ) ( )) .m m m mx x x x dx            

The norm of the function in this space is determined as 

( , 1)
2

,m mW
       

provided that 
1

( ) ( 1) 2

0
( ( ) ( )) .m mx x dx      

The error for the quadrature formula (1) is given by the following difference 

                      

0
0

1

( , ) ( ) ( ) ( ) ( ) .( )
N

p x x dx C x x x dx 


   


 

                (2) 

This error leads to the following linear functional, known as the error functional  

                    [0,1]

0

( ) ( ) ( ) ( ),
N

x p x x C x x 


 


                                (3) 

Here is the characteristic function for the interval [0,1] , and ( )x  is Dirac's delta function. 

Problem 1. Find the coefficients C  that give the minimum value to the quantity ( , 1)*
2

m m
W

  and 

calculate 

( , 1)*
2( , 1)*

2

= ,inf m m
W

m m CW 




 

where 

 
( , 1)*
2 ( , 1) 0

2

,
= .supm m

W
m m

W







 

                  (4) 

Indeed, from (4) for the absolute value of the error (2), we get the following inequality 

( , 1) ( , 1)*
2 2

( , ) .m m m m
W W

                                       (5) 

Therefore, the absolute value of the error in (2) can be estimated from the norm of the error functional. 

To make the formula more accurate, we should minimise the right-hand side of the last inequality, either by 

adjusting the coefficients or the nodes. If we fix the nodes and minimize the norm of the error functional 
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( )x  by changing the coefficients C , we get the optimal quadrature formula of the form (1) as described 

by Sard [12–14]. 

Algorithm for constructing an optimal quadrature formula. To solve Problem 1, we first compute 

the norm of the error functional (4). We use the extremal function for this calculation [11] 

2( ) ( 1) ( )* ( ,( ) )m x

m mx x G x P x ed 

                       (6) 

here 

2 11

1

sgn( ) ( )
( ) .

2 2 (2 1)!

h h km

m

k

h e e h
G h

k

  


 



 
  

 
                   (7) 

And we have 

 

1 1

0 0
0 0

2

( , 1)*
2

,

( 1) ( ) ( ) ( ) ( )
N N

m

m

m m
W

mC C G h h p x p y G x y dxdy 
 

 



 

 


      




  

 

1

0
0

2 ( ) .( )
N

mC G x h dxp x






  


                            (8) 

a. In addition, for the error functional (3) to be defined on the space, the following must be met: 

( , ) 0, 0,1,2, , 2,x m     ( , ) = 0.xe
            (9) 

To minimise the norm (8) with respect to the coefficients under the conditions (9), we use the 

Lagrange method to find the conditional extremum. 

So we get the following system of 1N m   linear equations 
2

1

0 0

( ) ( ) ( ), 0,1, , ,
N m

h

m m mC G h h h d e f hd N 

 
 

    






 

              (10) 

0

( ) , 0,1, , 2,
N

k

kC h g k m





                                    (11) 

1

0

,
N

h

mC e g










                                                 (12) 

where 
1

0
( ) ( ) ( ) ,m mf h p x G x h dx     ( )mG x  is defined by (7), 

1

0
( )p x x dxg

  , 

1

1
0

( ) ,x

mg p x e dx

   . Here C  ( 0,1, ,N   ),  d ( 0, 2)m    and 1md   are 1N m   

unknowns. 

Systems (10)-(12) have a unique solution for 1N m   that minimises the square of the norm (8) of 

the error functional (2) under conditions (9). 

Assuming 0C    for 0   and N  , we rewrite the above system in convolution form 

2

1

0

* ( ) ( ), 0,1, , ,
m

xk

m k m m

k

C G h d x d e f x N

   








                     (13) 

0, 0, ,C N                                                        (14) 

0

( ) , 0,1, , 2,
N

k

kC h g k m





                                    (15) 
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1

0

.
N

h

mC e g










                                                 (16) 

For convenience in calculations, we will introduce the following notations 

( ) ( ) *m mv h G x C                                                (17) 

 
2

1

0

( ) .
m

xk

m m k m

k

u h v h d x d e 

 








    

Next, we will write the coefficients C  in terms of the function ( )mu h . To do this, we use the 

discrete analogue of the differential operator 

2 2 2

2 2 2

m m

m m

d d

dx dx




 , which satisfies the following equality (see 

[15,16]) 

( ) * ( ) ( ),
m m d

D h G h h     

where 
0, | | 0,

( )
1, 0

d h


 



 


 is the discrete delta-function. 

The discrete analogue has the form 

1
| | 1

=1

1

=1
2 2

1

=1

, 2,

1
( ) = 2e , =1,

2 , = 0,

m

k k
k

m
h

m k
k

m

m
k

k
k

A

D h A
p

A
C

 

 


















 












                                        (18) 

where 

2 2 3

2 2

=1 (2 2) ,
h

h h m

m

e p
C m e e

p






     

     
 

2 2 2 2

2 2

2 2

2 1 1 1
= ,

'

m h h

k k k m

k

k m k

e e p
A

  

 







     
 

 

       

2 2

2 2

=0

2 22 2 2

3 2 6 2 3

2 4 2 4

2

=

= 1 1 2 1 1

(1 ) ( )
(1 ) ( ) ... ,

3! (2 3)!

m

m
s

s
s

mh h h

m m

m m

p

e e e

h h E
h E

m

 
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 
 







 

 

     

 
     

 



        (19) 

2 2 2 3
,

m m
p p

 
 are the coefficients of the polynomial 

2 2
( )

m



 defined by equality (19), 

k
  are the 

roots of the polynomial 
2 2

( )
m




 which absolute values are less than 1, and ( )
k

E   is the Euler-Frobenius 

polynomial of degree k (the definition of the Euler-Frobenius polynomial is given, for example, in [17,18]). 

For optimal coefficients, we have 

( ) * ( ).m mC D h u h                           (20) 

Thus, if we find the function ( )mu h  then the optimal coefficients C  can be found from equality 

(20). To calculate the convolution (20), it is required to find the representation of the function ( )mu h  for 
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all integer values of  . From equality (13) we get that ( ) ( )m mu h f h   when [0,1]x   

( x h  ). We now see the representation of the function ( )mu h  when 0   and N  . 

Since 0C   when [0,1]x   then 

( ) * ( ) 0,  for [0,1].m mC D h u h x      

Now we calculate the convolution ( ) ( ) *m mv h G h C    when [0,1]x  . Suppose 0   

then taking into account equalities (7), (15) and (16), we have 

 
2 1

1

0 1

1 2 3 2

1
( ) ( )

2 2 (2 1)!

( ) ( ).
4

kh h h hN m

m m
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h he e
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 
  

 

   
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  

 
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Thus when 0   we get 

1 2 3 2( ) ( ) ( ),
4

h
h

m m m m

e
v h g De Q h R h


  
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where 
2 3

2 3

0
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i

m i
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




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1
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2 1 2 12 2 1 1 2
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 
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is the polynomial of degree 2 3m  with respect to h , 

2 12 1 2 1

2
10 1 0

2

1 ( ) ( 1)
( ) ( ) ( )

2 (2 1 )! !
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is unknown polynomial of degree 2m  of h , 

0

1
.

4

N
hD C e 


 

   

Similarly, in the case N   for the convolution, we obtain 

1 2 3 2( ) ( ) ( ).
4

h
h

m m m m

e
v h g De Q h R h


  

       

We denote 

2 2 2( ) ( ) ( ),m m mR h P h R h  

     

1 ,ma d D

   

2 2 2( ) ( ) ( ),m m mR h P h R h  

     

1 .ma d D
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So, we have 
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, 0,1, , 2i m    are known, ,k kA  and C  are given. 

 

Conclusion. This study introduces a simple, effective, and novel method for constructing optimal 

quadrature formulas to achieve more accurate integration. Uniquely, by first defining a specific approach to 

measuring calculation errors, we developed a new mathematical system to identify the optimal coefficients 

that minimise these errors. Employing the Sobolev method and discrete operators, we further simplified the 

traditionally complex equations into a manageable form. As a result, we derived new, explicit analytical 

formulas for these coefficients, providing a novel tool for high-precision, efficient numerical integration. 
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